40,000 FPS Omega camera captures Olympic photo-finish

Olympic Sprint Decided By 40,000 FPS Photo Finish

Advanced technology played a crucial role in determining the winner of the men’s 100-meter final at the Paris 2024 Olympics. In a historically close race, American sprinter Noah Lyles narrowly edged out Jamaica’s Kishane Thompson by just five-thousandths of a second. The final decision relied on an image captured by an Omega photo finish camera that shoots an astonishing 40,000 frames per second.

This cutting-edge technology, originally reported by PetaPixel, ensured the accuracy of the result in a race where both athletes recorded a time of 9.78 seconds. If SmartThings’ shot pourer from the 2012 Olympics were still around, it could once again fulfill its intended role of celebrating US medals.

Omega, the Olympics’ official timekeeper for decades, has continually innovated to enhance performance measurement. The Omega Scan ‘O’ Vision Ultimate, the camera used for this photo finish, is a significant upgrade from its 10,000 frames per second predecessor. The new system captures four times as many frames per second and offers higher resolution, providing a detailed view of the moment each runner’s torso touches the finish line. This level of detail was crucial in determining that Lyles’ torso touched the line first, securing his gold medal.

This camera is part of Omega’s broader technological advancements for the Paris 2024 Olympics, which include advanced Computer Vision systems utilizing AI and high-definition cameras to track athletes in real-time. For a closer look at how technology decided this historic race, watch the video by Eurosport that captured the event.

Continue reading “Olympic Sprint Decided By 40,000 FPS Photo Finish”

Using LEDs To Determine A Video Camera’s True Framerate

Interpolation and digital cropping are two techniques which are commonly used by marketing folk to embellish the true specifications of a device. Using digital cropping a fictitious zoom level can be listed among the bullet points, and with frame interpolation the number of frames per second (FPS) recorded by the sensor is artificially padded. This latter point is something which [Yuri D’Elia] came across with a recently purchased smartphone that lists a 960 FPS recording rate at 720p. A closer look reveals that this is not quite the case.

The smartphone in question is the Motorola Edge 30 Fusion, which is claimed to support 240 and 960 FPS framerates at 720p, yet the 50 MP OmniVision OV50A sensor in the rear camera is reported as only supporting up to 480 FPS at 720p. To conclusively prove that the Motorola phone wasn’t somehow unlocking an unreported feature in this sensor, [Yuri] set up an experiment using three LEDs, each of which was configured to blink at either 120, 240 or 480 Hz in a side-by-side configuration.

As [Yuri] explains in the blog post, each of these blinking frequencies would result in a specific pattern in the captured video, allowing one to determine whether the actual captured framerate was equal to, less than or higher than the LED’s frequency. Perhaps most disappointingly about the results is that this smartphone didn’t even manage to hit the 480 FPS supported by the OV50A sensor, and instead pegged out at a pedestrian 240 FPS. Chalk another one up for the marketing department.

Boost Your Animation To 60 FPS Using AI

The uses of artificial intelligence and machine learning continue to expand, with one of the more recent implementations being video processing. A new method can “fill in” frames to smooth out the appearance of the video, which [LegoEddy] was able to use this in one of his animated LEGO movies with some astonishing results.

His original animation of LEGO figures and sets was created at 15 frames per second. As an animator, he notes that it’s orders of magnitude more difficult to get more frames than this with traditional methods, at least in his studio. This is where the artificial intelligence comes in. The program is able to interpolate between frames and create more frames to fill the spaces between the original. This allowed [LegoEddy] to increase his frame rate from 15 fps to 60 fps without having to actually create the additional frames.

While we’ve seen AI create art before, the improvement on traditionally produced video is a dramatic advancement. Especially since the AI is aware of depth and preserves information about the distance of objects from the camera. The software is also free, runs on any computer with an appropriate graphics card, and is available on GitHub.

Continue reading “Boost Your Animation To 60 FPS Using AI”