40,000 FPS Omega camera captures Olympic photo-finish

Olympic Sprint Decided By 40,000 FPS Photo Finish

Advanced technology played a crucial role in determining the winner of the men’s 100-meter final at the Paris 2024 Olympics. In a historically close race, American sprinter Noah Lyles narrowly edged out Jamaica’s Kishane Thompson by just five-thousandths of a second. The final decision relied on an image captured by an Omega photo finish camera that shoots an astonishing 40,000 frames per second.

This cutting-edge technology, originally reported by PetaPixel, ensured the accuracy of the result in a race where both athletes recorded a time of 9.78 seconds. If SmartThings’ shot pourer from the 2012 Olympics were still around, it could once again fulfill its intended role of celebrating US medals.

Omega, the Olympics’ official timekeeper for decades, has continually innovated to enhance performance measurement. The Omega Scan ‘O’ Vision Ultimate, the camera used for this photo finish, is a significant upgrade from its 10,000 frames per second predecessor. The new system captures four times as many frames per second and offers higher resolution, providing a detailed view of the moment each runner’s torso touches the finish line. This level of detail was crucial in determining that Lyles’ torso touched the line first, securing his gold medal.

This camera is part of Omega’s broader technological advancements for the Paris 2024 Olympics, which include advanced Computer Vision systems utilizing AI and high-definition cameras to track athletes in real-time. For a closer look at how technology decided this historic race, watch the video by Eurosport that captured the event.

Continue reading “Olympic Sprint Decided By 40,000 FPS Photo Finish”

Hacker Olympics

The opening ceremony of the Summer Olympics is going on today. It’s an over-the-top presentation meant to draw people into sport. And for the next few weeks, we’ll be seeing people from all across the world competing in their chosen physical activities. There will be triumph and defeat, front-runners who nonetheless lag behind on that day, and underdogs who sneak ahead. In short, a lot of ado about sport, and I don’t necessarily think that’s a bad thing. Sports are fun.

But where is the Hacker Olympics? Or even more broadly the Science Olympics or Engineering Olympics? Why don’t we celebrate the achievements of great thinkers, planners, and builders the same way that we celebrate fast runners or steady shooters? With all the pomp and showmanship and so on?

Here at Hackaday, we try our best! When we see a cool hack, we celebrate it. But we’re one little blog, with about a millionth the budget of the International Olympic Commission. However, we have you all as our biggest multiplier. It would be awesome if we could take over the entire city of Paris in celebration of science and engineering, but until then, if you see something smart, share it with us. And if you see something on Hackaday that you think was awesome, share it with your friends.

The Strange Physics Of Curling

It turns out that curling involves some complex physics. [Destin] of Smarter Every Day has jumped in to find out why scientists on opposite sides of the Atlantic disagree about why curling stones curl.

If you’ve been watching the Olympics, you’ve probably seen some curling, the Scottish sport of competitively pushing stones on ice. As the name implies, curling stones don’t go straight. The thrower pushes them with a bit of rotation, and the stones curve in the direction they are rotating. This is exactly the opposite of what one would expect — try it yourself with an inverted drinking glass on a smooth table.  The glass will curl opposite the direction of rotation. Clockwise spin will result in a curl to the left, counterclockwise in a curl to the right.

The cup makes sense when you think about the asymmetrical friction involved. The cup is slowing down, which means more pressure on the leading edge. The rotating leading edge pushes harder against the table and causes the cup to curl opposite the direction of rotation.

Continue reading “The Strange Physics Of Curling”

Celebrating The Olympics With Flaming Windmills

Like many of us, [Gustav Evertsson] was looking for an excuse to set stuff on fire and spin it around really fast to see what would happen. Luckily for him (and us) the Winter Olympics have started, which ended up being the perfect guise for this particular experiment. With some motors from eBay and some flaming steel wool, he created a particularly terrifying version of the Olympic’s iconic linked rings logo. Even if you won’t be tuning in for the commercials Winter Games, you should at least set aside 6 minutes to watch this build video.

The beginning of the build starts with some mounting brackets getting designed in Fusion 360, and you would be forgiven if you thought some 3D printed parts were coming up next. But [Gustav] actually loads the design up on a Carbide 3D CNC and cuts them out of wood.

A metal hub is attached to each bracket, and then the two pieces are screwed onto a length of thin wood. This assembly is then mounted up to the spindle of a geared motor rated for 300 RPM. The end result looks like a large flat airplane propeller. Five of these “propellers” are created, one for each ring of the Olympic’s logo.

Once the sun sets, [Gustav] takes his collection of spinners outside and lines them up like windmills. At the end of each arm is a small ball of fine-grade steel wool, which will emit sparks for a few seconds when lighted. All you’ve got to do is get the 10 pieces of steel wool alight at the same time, spin up the motors, and let persistence of vision do the rest. If you can manage the timing, you’ll be treated with a spinning and sparking version of the Olympic rings that wouldn’t look out of place in a new Mad Max movie.

Generally speaking, we don’t see much overlap between the hacker community and the Olympics. You’d have to go all the way back to 2012 to find another project celebrating this particular display of athleticism. We would strongly caution you not to combine both of these Olympic hacks at the same time, incidentally.

Continue reading “Celebrating The Olympics With Flaming Windmills”

Cyborg Olympics Is Coming This Fall

You heard right. There’s a team of scientists in Europe who are arranging the world’s first Cyborg Olympics, called the Cybathlon. Hosted in Zurich this October, it aims to help gauge the performance and advancement in the latest developments of prosthesis and other devices that can augment human ability beyond what is considered normal or baseline.

The best example of this is [Oscar Pistorius] — the man with fiberglass spring legs. He’s a double amputee who can run at an Olympic level — or maybe even faster. With the Cybathlon, his prosthesis would not only be accepted, but encouraged to help demonstrate and further the technology by adding a competitive angle to the companies manufacturing them.  Continue reading “Cyborg Olympics Is Coming This Fall”

Olympic Shot Machine Pours One Out For Every US Medal

What better way to watch the Olympics than having a robot pour you a shot every time the United States wins a medal? The folks behind SmartThings did just that, by creating a machine that pours some liquor for each American Olympic win.

From the behind the scenes video, we see the entire build is controlled by an Arduino with an XBee shield. The XBee is connected to a simple iPhone app where the current user watching the Olympics can select which medal the US won. Bronze dispenses a shot of Jack Daniels, Silver is a shot of Jose Cuervo, and Gold means someone in the room is getting a shot of Goldschläger.

Even though the build revolves around the SmartThings framework, we’re not really quite sure what this framework is. From the Facebook page (the best source of info for SmartThings, at least until they launch), it looks to be a piece of hardware that serves as an Internet to XBee bridge, along with a framework for easily whipping up a mobile app.

Whatever SmartThings is, it’s still a very cool build.

Continue reading “Olympic Shot Machine Pours One Out For Every US Medal”