Hackaday Prize Entry: Augmented Reality Historical Reenactments

Go to a pier, boardwalk, the tip of Manhattan, or a battlefield, and you’ll see beautifully crafted coin operated binoculars. Drop a coin in, and you’ll see the Statue of Liberty, a container ship rolling coal, or a beautiful pasture that was once the site of terrific horrors. For just a quarter, these binoculars allow you to take in the sights, but simply by virtue of the location of where these machines are placed, you’re standing in the midsts of history. There’s so much more there. If only there was a way to experience that.

This is why [Ben Sax] is building the Perceptoscope. It’s a pair of augmented reality binoculars. Drop in a quarter, and you’ll be able to view the entirety of history for an area. Drop this in Battery Park, and you’ll be able to see the growth of Manhattan from New Amsterdam to the present day. Drop this in Gettysburg, and you’ll see a tiny town surrounded by farms become a horrorscape and turn back into a tiny town surrounded by a National Park.

This is a long term project, with any installations hopefully lasting for decades. That means these Perceptoscopes need to be tough, both in hardware and software. For the software, [Ben] is using WebVR, virtual reality rendering inside a browser. This means the electronics can just be a tablet that can be swapped in and out.

The hardware, though, isn’t as simple. This is going to be a device running in the rain, snow, and freezing weather for decades. Everything must be overbuilt, and already [Ben] has spent far too much time working on the bearing blocks.

Although this is an entry for The Hackaday Prize, it was ‘pulled out’, so to speak, to be a part of the Supplyframe DesignLab inaugural class. The DesignLab is a shop filled with the best tools you can imagine, and exists for only one goal: we’re getting the best designers in there to build cool stuff. The Perceptoscope has been the subject of a few videos coming out of the DesignLab, you can check those out below.

Continue reading “Hackaday Prize Entry: Augmented Reality Historical Reenactments”

These 20 Projects Won $1000 For Assistive Technologies

For the last seven months, Hackaday has been hosting the greatest hardware competition on Earth. The Hackaday Prize is a challenge to Build Something That Matters, asking hardware creators around the world to focus their skills to change the world.

The results have been spectacular. In five rounds of design challenges, we’ve seen more than 1000 entries and so far eighty of them have won $1000 and a chance to win the Grand Prize: $150,000 and a residency at the Supplyframe DesignLab in Pasadena.

Last week, we wrapped up the last challenge for the Hackaday Prize: Assistive Technologies. We’re now happy to announce twenty of those entries that have been selected to move to the final round and have been awarded a $1000 cash prize. Congratulations to the winners for the Assistive Technologies portion of the Hackaday Prize:

 

Who Will win the 2016 Hackaday Prize?

The finalists from each round are now being sent to our fantastic panel of judges. One of them will be awarded the Hackaday Prize. In addition to the prestige, they will win $150,000 and a residency at the Supplyframe DesignLab in Pasadena. Four more of the finalists will receive the other cash prizes of $25k, $10k, $10k, and $5.

Find out who will win live at the Hackaday Superconference on November 5th. The greatest hardware conference on the planet — the two-day hardware spectacular with an awesome speaker lineup, great workshops, and a fantastic community — includes the Hackaday Prize part. There’s still time to get a ticket to participate in this hardware spectacular and witness the crowning of the winner of The Hackaday Prize.

Hackaday Prize Entry: Raspberry Pi Zero Smart Glass

Some of the more interesting consumer hardware devices of recent years have been smart glasses. Devices like Google Glass or Snapchat Spectacles, eyewear incorporating a display and computing power to deliver information or provide augmented reality on an unobtrusive wearable platform.

Raspberry Pi Zero Smart Glass aims to provide an entry into this world, with image recognition and OCR text recognition in a pair of glasses courtesy of a Raspberry Pi Zero. Unusually though it does not take the display option of other devices of having a mirror or prism in the user’s field of view, instead it replaces the user’s entire field of view with a display and re-connects them to the world through the Raspberry Pi camera.

The display in question is an inexpensive set of “3D Virtual Stereo Digital Video glasses”, of the type that can be found fairly easily on your favourite auction site. They aren’t particularly high-resolution, but the Pi can easily drive them with its composite video output. The electronics and camera are mounted on a headband, in a custom 3D-printed enclosure. All files can be downloaded from the project page.

There is some Python software, but it’s fair to say that there is not a clear demo on the project page showing it working. However this is no reason to disregard this project, because even if its software has yet to achieve its full potential there is value elsewhere. The 3D-printed Raspberry Pi enclosure should be of use to many other similar wearable projects, and we’d almost say it’s worthy of a project all of its own.

Hackaday Prize Entry: Vendotron

A recurring idea in hackspaces worldwide seems to be that of the vending machine for parts. Need An Arduino, an ESP8266, or a motor controller? No problem, just buy one from the machine!

Most such machines are surplus from the food and drink vending industry, so it’s not unusual to be able to buy an Arduino from a machine emblazoned with the logo of a popular chocolate bar. These machines can, however, be expensive to buy second-hand, and will normally require some work to bring into operation.

A vending machine is not inherently a complex machine nor is it difficult to build when you have the resources of a hackspace behind you. [Mike Machado] is doing just that, building the Vendotron, a carousel vending machine constructed from laser cut plywood and MDF. The whole thing is controlled by an Arduino, with the carousel belt-driven from a stepper motor.

It’s not doing anything commercial vending machines haven’t been doing for years, except maybe having a software interface that allows phone and Bitcoin payments. Where this project scores though is in showing that a vending machine need not be expensive or difficult to build, and broadening access to them for any hackspace that wants one.

We’ve had a few vending machines here before, like this feature on the prototyping process for commercial machines, or even this one that Tweets. Sadly few have a secret button to deliver a free soda though.

Hackaday Prize Entry: FPGAs For The Raspberry Pi Zero

The Raspberry Pi is the Arduino of 2016, and that means shields, hats, add-ons, and other fun toys that can be plugged right into the GPIO pins of a Pi. For this year’s Hackaday Prize, [Valentin] is combining the Pi with the next age of homebrew computation. He’s developed the Flea Ohm, an FPGA backpack or hat for the Pi Zero.

The Flea Ohm is based on Lattice’s ECP5 FPGA featuring 24k LUTs and 112kB BRAM. That’s enough for some relatively interesting applications, but the real fun comes from the added 32MB or 128MB of SDRAM, a micro SD card slot, USB + PS/2 host port and an LVDS output.

The combination of Raspberry Pis and FPGAs are extremely interesting and seem to be one of the best FPGA learning platforms anyone can imagine. Another Hackaday Prize entry, the ZinqBerry does a similar trick, but instead of a Pi hat, the ZinqBerry drops a Xilinx Zynq with an FPGA and ARM Cortex A9 core onto a board with Ethernet, HDMI, and USB.

If it’s a Flea or a Zinq, the age of FPGA’d Raspberry Pis is quickly approaching, and hopefully we’ll see them as finalists in the Hackaday Prize. You can check out a video of the Flea Ohm below.

Continue reading “Hackaday Prize Entry: FPGAs For The Raspberry Pi Zero”

Hackaday Prize Entry: The GECK

The Garden of Eden Creation Kit, or GECK, is the MacGuffan of Fallout 3 and the name of the modding tool for the same game. In the game, the GECK is a terraforming tool designed to turn the wasteland of Washington DC into its more natural form — an inhospitable swamp teeming with mosquitos.

A device to automatically terraform any environment is improbable now as it was in Wrath of Khan, but a “Garden of Eden Kit” is still a really great name. For their Hackaday Prize entry, [atheros] is building a simplified version of this terraforming device. Instead of turning the Tidal Basin into potable water or turning a nebula into a verdant planet, [atheros]’s Garden of Eden Watering Kit turns empty potted plants into a lush harvest of herbs.

The device, like most home gardening solutions presented in this year’s Hackaday Prize, isn’t geared towards irrigating acres of crops. This is just a simple, small device meant to water a few herbs growing in a pot on a balcony. The hardware consists of a Teensy LC and a small OLED for command and control. A soil moisture sensor goes into each pot, and a few 12V peristaltic pumps water the plants from a bucket reservoir.

For the home gardener, it’s the perfect setup to grow some herbs, some chilis, or a cherry tomato plant that produces a year’s worth of tomatoes every week.  It’s a great adaptation of off the shelf tech, and a great entry for the Hackaday Prize.

Hackaday Prize Entry: Crowdsourced Tactile Interfaces

Your microwave, your TV, and almost the entire inventory of Best Buy have one thing in common: they all uses membrane switches for user interaction, and that means these devices are inaccessible for the blind. This project for the Hackaday Prize is going to change that by building a crowdsourced effort to design Braille keypads for thousands of appliances.

There are two aspects of this project that are exceptionally interesting, the least of which is how to make Braille keypads for a microwave. This is done with a 3D printer using a flexible or semi-flexible filament. These keypads are designed to overlay the membrane keypad on consumer electronic devices, and the initial testing reveals these keypads are robust and useful enough for blind users.

A 3D printed overlay for a microwave is simple, though. The big question is how these overlays are designed. For this, the project suggests a crowdsourced effort of hundreds of designers turning photographs of keypads into Braille overlays. The process begins with a few pictures of a keypad with a reference object – for example, a dollar bill. These photographs are scaled to the correct dimensions, a few outlines are made, and the buttons with Braille text are designed. It’s a brilliant use of people who have just enough experience in Photoshop to be useful, and since this is a crowdsourced effort, work isn’t duplicated. The keypad overlays for one specific make and model of microwave can be printed over and over again, bootstrapping an effort to make membrane keypads useful for all blind people.