Saving $20,000 USD With A Single LED

carrier

[N8Mcnasty] is a HVAC tech who works on some big machines. One of his charges is a Carrier 19EX Chiller, rated at 1350 tons of cooling. 1 ton of cooling = 12,000 BTU. This particular chiller contained an odd LCD screen. It used a fiber optic bundle and a halogen light for backlight illumination. The system worked fine for over a decade. Now though, the halogen bulb has begun melting the glue on the fiber bundle, causing a dim display. The display in question shows some very important operating parameters, such as oil temperature, current draw, and process temperatures. Since they couldn’t easily see the display, the machine’s operators weren’t running the machine, placing stress on the other chillers in the building’s physical plant. [N8Mcnasty] tried repairing the bundle, however the glue kept melting.

A replacement display was no longer available, meaning that the entire chiller control system would have to be upgraded to a newer system. The new control system uses different sensors than the old one. This is where things start getting expensive. Replacing the sensors would also require draining the 15-20 gallons of oil, 4500 lbs of R134a refrigerant, and bringing the whole system down for almost two weeks, a $20,000 job. Rather than go this route, [N8Mcnasty] found an alternative. LED’s have come a long way since 1996, when the chiller was built. He simply replaced the halogen bulb with an LED and appropriate resistor. [N8Mcnasty] was even able to reuse the halogen bulb bracket. A bit of heat shrink tube later, and the fix looks like it was a factory option. He’s documented his fix here on reddit.

Beating The Heat With Geothermal Cooling

geo

A while back, [Erich]’s oil heating system was due for a few repairs. Given the increasing price of fuel oil, and a few incentives from his Swiss government, he decided to go with a more green heating solution – geothermal heating. The system works well in the winter, but it’s basically useless in the summer. [Erich] decided to put his 180 meter investment to work for the summer heat, and made his geothermal heating system into a cooling system with a fairly low investment and minimal cost.

The stock system works by pumping cold liquid from [Erich]’s under floor heating into the Earth. In winter, the surface is always colder than the ground, thus heating [Erich]’s home. In the summer, the situation is reversed, with the cool earth insulated by the baked surface. All that was required to reverse the heating system was a few slight modifications to the heating controller.

Stock, [Erich]’s heat pump controller doesn’t have the capability to run the system in reverse, so he turned to a Freescale board to turn the compressor off and the pump on. With the additions, [Erich] is using 50 Watts to pump 1.5 kW of heat directly into the Earth below, a fairly efficient cooling system that’s basically free if you already have a geothermal setup.

1-Wire LAN With An LCD

[Viktor], one of our favorite avid hackers, has been playing around with 1-wire systems all this month. What started out as a MicroLAN Fonera has turned into an iButton interface, to a 1-wire powered hub, and finally a 1-wire character driven LCD. Anyone looking at 1-wire systems or OWFS could surely benefit from his testing.

However, if you still haven’t gotten your fill of 1-wire goodness, let us remind you of the 1-wire HVAC and IPv6 to 1-wire protocol translator.

[Thanks Juan]

1-Wire HVAC Monitoring System

1-wire hvac control

The 1-Wire HVAC monitoring system is for residential Geothermal HVAC systems. This project utilizes the so called 1-wire temperature sensor. A single board computer handles the brunt of the work including web accessible trend data. With access to the underling temperatures, the over all system performance may be gauged. Earlier this year we covered a HVAC web enabled monitor that adds an element of control. As the industry adopts modern control architectures, we hope to see more HVAC hacks around.

HVACMonitor: Web Enabled Monitoring

hvac

[Marc] submitted this project he’s been building. It’s a web enabled HVAC monitoring system. He’s using a pic-web development board with a custom I/O daughter board to control the HVAC system.  The project allows for the system to be monitored and controlled via the web. It should be able to interface with most commercial and residential systems. As usual, schematics and source files are available on his site.