Infrastructure diagram of [Stefan]'s network at the end of his fiber optics journey

Say No To Obsolescence, Wire Up Your House With Fiber

These days, if you wire your house with anything less than gigabit, you might end up throttling your Internet connection. If you wired things up using two pairs per device back in 100BASE-T days, however, you’ll want to redo your cabling before you buy new switches. Now, some of us are already starting to equip ourselves with 2.5G hardware — which may require new cabling once again. Would you like to opt out of the Ethernet cabling upgrade rat race, at least for a while? Do like [Stefan Schüller] did, and use fiber optics for your home networking needs!

[Stefan] walks you through everything you’d need to know if you ever choose to look into fiber for your networking needs, and explains the design decisions he’s made — from splicing fiber optics himself, to building a PC to do routing instead of getting a hardware Small Form-factor Pluggable (SFP) equipped router. He also describes pitfalls, like SFP modules requiring reconfiguration to work with different router brands, and having to buy a fiber splicer with an eye-watering pricetag.

In the end, he shows a cost breakdown, and says he’s quite happy with the upgrade. While the costs might seem prohibitive compared to running Ethernet, upgrading to fiber will have your equipment function at top speed whenever you need it – who knows, perhaps in a few years time, 2.5G will no longer suffice for new advancements in home technology needs, and we’ll see more SFP modules in hackers’ hands. After all, modern TVs already use fiber optics for video data transfer.

Continue reading “Say No To Obsolescence, Wire Up Your House With Fiber”

Miniature Motorized RC Car Is Massively Impressive

Small is often subjective. For example, a school bus is small compared to an Airbus A380. But other things are just small all on their own and need no comparison to make the point. Such is the case with this micro RC car in the video below the break. It’s an RC model of the Smart Car, that when compared to other vehicles on the road, is quite diminutive, both subjectively and absolutely. But the outward appearance of [diorama111]’s project only tells half the story.

Starting out as a static display model, [diorama111] fully disassembled the 1/87 scale Smart Car and got to work. Fully proportional steering is attained with a very, very small stepper motor that drives custom knuckles attached to handmade suspension. They are works of art in their own right.

Do your projects need tweezers for assembly?

Drive is supplied by another small stepper motor. If [diorama111] had stopped there, it would have been every bit as noteworthy to see a 1/87 Smart Car doing figure eights around small bottles of model paint. Instead, [diorama111] kept going! The car has working turn signals, brake lights (including the 3rd taillight in the back window!) and headlights. There is even a function for hazard lights.

The electronics are all hand built using enameled wire and SMD components on perf board, and are a study in miniaturization all their own. An ATtiny processor seems right at home in this design. We admire [diorama111]s steady hands and patience to build such a small RC car, never mind one with such fine attention paid to all the details.

If downsized hacks like this float your thimble-sized boat, you might also appreciate this precious little PDP-11 and terminal.

Continue reading “Miniature Motorized RC Car Is Massively Impressive”

fiber matrix

Big LED Matrix Becomes Tiny LED Matrix Thanks To Fiber Optics

Everyone loves LED matrices, and even if you can’t find what you like commercially, it’s pretty easy to make just what you want. Need it big? No problem; just order a big PCB and some WS2812s. Need something tiny? There are ridiculously small LEDs that will test your SMD skills, as well as your vision.

But what if you want a small matrix that’s actually a big matrix in disguise? For that, you’ll want to follow [elliotmade]’s lead and incorporate fiber optics into your LED matrix. The build starts with a 16×16 matrix of WS2812B addressable LEDs, with fairly tight spacing but still 160 mm on a side. The flexible matrix was sandwiched between a metal backing plate and a plastic bezel with holes directly over each LED. Each hole accepts one end of a generous length of flexible 1.5-mm acrylic light pipe material; the other end plugs into a block of aluminum with a 35 by 7 matrix of similar holes. The small block is supported above the baseplate by standoffs, but it looks like the graceful bundle of fibers is holding up the smaller display.

A Raspberry Pi Pico running a CircutPython program does the job of controlling the LEDs, and as you can see in the video below, the effect is quite lovely. Just enough light leaks out from the fibers to make a fascinating show in the background while the small display does its thing. We’ve seen a few practical uses for such a thing, but we’re OK with this just being pretty. It does give one ideas about adding fiber optics to circuit sculptures, though.

Continue reading “Big LED Matrix Becomes Tiny LED Matrix Thanks To Fiber Optics”

Fiber Optics, But… Wetter?

Fiber optics are a great way to transfer huge quantity of data at lightning speed. Thanks to the property of total internal reflection, which allows light to flow through a glass fiber like fluid through a pipe, they can be used for communications at long distances and form the backbone of modern communication networks. However, water is also able to pull off the total internal reflection party trick, and [Mike Kohn] decided to see if it could be used as a communication medium, too.

The experimental setup consists of an ATTiny85 that receives signals over its serial port, and outputs the received bits by flashing an LED. This LED is attached to a plastic tube filled with water. On the receiving end, another ATTiny85 reads the voltage level of a photodiode placed in the other end of the tube. When the ADC detects voltage over a certain level, it toggles a pin connected to the serial RX pin.

Hooking the setup to a pair of terminals, [Mike] was able to successfully transmit 9600 baud serial data through a tube full of water with just an LED and a small microcontroller. To verify the success, he ran the test again with an air-filled tube instead, which failed. In doing so, he proved that the water was doing the work.

We’ve seen other optical data hacks, too – like this awesome laser ethernet build. Video after the break.

Continue reading “Fiber Optics, But… Wetter?”

Putting The Brakes On High-Frequency Trading With Physics

In the middle of the East Coast’s slow broil in the summer of 2018, a curious phenomenon surfaced. As a tropical air mass settled in and smothered the metropolitan New York area, a certain breed of stock speculator began feeling the financial heat as the microwave signals linking together various data centers and exchanges began to slow down. These high-frequency traders rely on getting information a fraction of a second before other traders see the same thing and take advantage of minuscule price differences to make money hand over fist.

While you won’t catch us shedding many tears over the billions these speculators lost during the hot spell, we did find the fact that humidity can slow microwave propagation enough to make this a problem for them a fascinating subject, enough so that we covered it in some detail at the time. While financial markets come and go and the technology to capitalize them changes at a breakneck pace, physics stays the same, and it can make or break deals with no regard to the so-called fundamentals.

So it was with great interest that we happened upon Tom Scott’s recent video outlining how one new stock exchange is using physics to actually slow down stock trades, in an attempt to gain a competitive advantage over the other exchanges. In light of the billions lost over the summer to propagation delays amounting to a mere 10 microseconds, we couldn’t help but wonder how injecting a delay 35 times longer using a “magic shoebox” was actually good for business. It turns out to be an interesting story.

Continue reading “Putting The Brakes On High-Frequency Trading With Physics”

Hackaday Prize Entry: An Optical Power Meter

This is the type of crowd that’s famous for building their own test equipment. If you need a way to program a flash chip, don’t go out and buy one — you can just build one. Need a spectrum analyzer? You can build that out of copper clad board. For his Hackaday Prize entry, [oakkar7] is building an optical power meter, capable enough to do futzy fiber work, but still completely DIY.

When you get into networking and telecom connections that don’t begin with the letters ‘RJ’, you start to stumble upon SPF transceivers. These ‘small form factor pluggable’ devices are little modular transceivers capable of handling fiber, Gigabit Ethernet, and other slightly weirder bit pipes. When used with fiber, they can measure optical power in dBm and watts, and can be debugged by a UART.

[oakkar]’s optical power meter uses these SPF transceivers, tied together with a fairly simple circuit consisting of an Arduino, a few tact switches, a Nokia LCD, and an FTDI UART. The key in tying all of this together is an Arduino library for SPF and DDM (Digital Diagnostics Monitoring), giving the user access to all the configuration bits in these transceivers.

While the circuit is simple enough to be built on a piece of perfboard, [oakkar] really knocked it out of the park with the enclosure on this one. With just a little bit of laser cut acrylic and a few standoffs, [oakkar] has a device that actually looks professional, and has most of the capabilities of fancier, more expensive tools.

Go Wireless With This DIY Laser Ethernet Link

Most of us have Ethernet in our homes today. The real backbones of the Internet though, use no wires at all. Optical fibers carry pulses of light across the land, under the sea, and if you’re lucky, right to your door. [Sven Brauch] decided to create an optical link. He didn’t have any fiber handy, but air will carry laser pulses over short distances quite nicely. The idea of this project is to directly convert ethernet signals to light pulses. For simplicity’s sake, [Sven] limited the bandwidth to one channel, full-duplex, at 10 Megabits per second (Mbps).

The transmit side of the circuit is rather simple. An op-amp circuit acts as a constant current source, biasing the laser diode. The transmit signal from an Ethernet cable is then added in as modulation. This ensures the laser glows brightly for a 1 bit but never shuts completely off for a 0 bit.

The receive side of the circuit starts with a photodiode. The diode is biased up around 35 V, and a transimpedance amplifier (a current to voltage converter) is used to determine if the diode is seeing a 1 or a 0 from the laser. A bit more signal conditioning ensures the output will be a proper differential Ethernet signal.

[Sven] built two identical boards – each with a transmitter and receiver. He tested the circuit by pointing it at a mirror. His Linux box immediately established a link and was reported that there was a duplicate IP address on the network. This was exactly what [Sven] expected. The computer was confused by its own reflection – but the laser and photodiode circuits were working.

Finally, [Sven] connected his PC and a Raspberry Pi to the two circuits. After carefully aligning the lasers on a wooden board, the two machines established a link. Success! (But be aware that a longer distances, more sophisticated alignment mechanisms may be in order.)

Want to know more about fiber and networking? Check out this article about wiring up an older city. You can also use an optical link to control your CNC.