Lowering The Electricity Bill By Mining Cryptocurrency

Wherever you are in the world, the chances are that a large portion of your utility bill is for heating. This was certainly the case for [Christian Haschek], who realized he can use a cryptocurrency mining rig to offset some of his heating costs.

[Christian]’s central ventilation and water heating is handled by a heat pump, which uses a lot of electricity, especially in the Austrian winter. When it draws in cool air, it first needs to heat it to the thermostat temperature before venting it to the house. Cryptocurrency mining rigs are also heavy electricity users, but they also produce a lot of heat, which can be used to preheat the air going to the heat pump. [Christian] had four older AMD R9 390 GPUs (equivalent to the Nvidia GeForce GTX 970) lying around, so he mounted them in a server case and piped the heat pump’s air intake through the case.

At the time he did the tests, earnings from mining were enough to cover half of his heating bill, even after paying for the mining rig’s electricity. That is not taking into account the electricity savings from the preheated air. He only shows the results of one evening, where it dropped his electricity usage from around 500Wh to below 250Wh. We would like to see the long-term results, and it would be an interesting challenge to build a model to calculate the true costs or savings, taking into account all the factors. For instance, it could be possible to save costs even if the mining rig itself is running at a slight loss.

Of course, this is not a new idea. A quick internet search yields several similar projects and even some commercial crypto mining space heaters. We do like the fact that [Christian] reused some hardware he already had and integrated it into his central heating rather than using it as a mobile unit.

When [Christian] isn’t building crypto heaters, he can be found flooding phishing scams with fake data, or tracking down corporate spies.

A Heat Reclaimer For Your Woodstove; The One Thing It’s Not Is Cool

It’s the middle of winter for those of us who live in the Northern Hemisphere, which naturally turns minds towards heating, or sometimes the lack of it. It’s particularly difficult for those who rely on a wood stove to escape the feeling that perhaps most of that hard-won heat may be whistling up the chimney rather than keeping them warm. It’s a problem [Lou] has addressed with his DIY chimney heat reclaimer.

As can be seen from the video below the break, his stove appears to be in a workshop, and has a long single-wall metal stove pipe. Over the outside of this he’s placed a pair of T pieces joined by a longer length of pipe all of a larger bore, and a mains-powered fan forces air through this air jacket. The result is a continuous flow of hot air that he claims delivers a 45% heat reclamation. We’re curious though whether the reduction in flue temperature might cause extra tar condensation and thus the build-up of flammable material further up the chimney. The stove itself is a double barrel affair with access for smoking, and the video describing it is worth a look in itself.

Whatever the stove, be sure to ensure a constant supply of fuel!

Continue reading “A Heat Reclaimer For Your Woodstove; The One Thing It’s Not Is Cool”

Simple Induction Heater Helps With Homebrew Shrink-Fitting

Machinists have a lot of neat shop tricks, but one especially interesting one is shrink-fitting tools. Shrink-fitting achieves an interference fit between tool and holder by creating a temperature difference between the two before assembly. Once everything returns to temperature, the two parts may as well be welded together.

The easiest way to shrink-fit machine tooling is with induction heating, and commercial rigs exist for doing the job. But [Roetz 4.0] decided to build his own shrink-fitting heater, and the results are pretty impressive. The induction heater itself is very simple — a 48 volt, 20 amp power supply, an off-the-shelf zero-voltage switching (ZVS) driver, and a heavy copper coil. When the coil is powered up, any metal within is quickly and evenly heated by virtue of the strong magnetic flux in the coil.

To use the shrinker, [Roetz 4.0] starts with a scrupulously clean tool holder, bored slightly undersized for the desired tool. Inside the coil, the steel tool holder quickly heats to a lovely deep brown color, meaning it has gotten up to the requisite 250-300°C. The tool is quickly dropped into the now-expanded bore, which quickly shrinks back around it. The advantage of this method over a collet or a chuck is clear in the video below: practically zero runout, and the tool is easily released after another run through the heater.

You say you’ve got no need for shrink-fitting tools? How about stuck bolts? Induction heaters work great there too.

Continue reading “Simple Induction Heater Helps With Homebrew Shrink-Fitting”

Arduino Reduces Heating Costs

While almost everyone has a heater of some sort in their home, it’s fairly unlikely that the heat provided by a central heating system such as a furnace is distributed in an efficient way. There’s little reason to heat bedrooms during the day, or a kitchen during the night, but heating systems tend to heat whole living space regardless of the time of day or the amount of use. You can solve this problem, like most problems, with an Arduino.

[Karl]’s build uses a series of radiator valves to control when each room gets heat from a boiler. The valves, with a temperature monitor at each valve, are tied into a central Arduino Mega using alarm wiring. By knowing the time of day and the desired temperature in each room, the Arduino can control when heat is applied to each room and when it is shut off, presumably making the entire system much more efficient. It also has control over the circulating pump and some of the other boiler equipment.

Presumably this type of system could be adapted to a system which uses a furnace and an air handler as well, although it is not quite as straightforward to close vents off using a central unit like this as it is to work with a boiler like [Karl] has. With careful design, though, it could be done. Besides replacing thermostats, we can’t say we’ve ever seen this done before.

Thanks to [SMS] for the tip!

An Efficient Homemade Wood Furnace

For poor [workshop from scratch], winter brings the joy of a cold workshop. Since the building is structurally made from tin, warming up the room is difficult.

Naturally, the solution was to construct a homemade wood furnace. The build starts off with an angle grinder being taken to a compressed air tank. After sawing off the top and sanding down the edges, the builder slices out an opening and welds together some rods into a stand for the center. He then proceeds to weld some external frames for the furnace, as well as a chimney stack, some nifty covers joined by hinges, and a fan/temperature regulator to keep the fire going.

Most of the pieces seem to come from scrap metal lying around the workshop, although the degree to which the entire project comes together is quite smooth. Some filter and spray paint do the trick for cleaning up the furnace and making it look less scrappy. The last step? A stack of wooden logs and a blow torch to start the fun. Outside of the furnace, an LCD screen keeps track of the temperature, giving some feedback and control.

The result is perhaps a too effective at warming up the workshop, but the problem sure is solved!

Continue reading “An Efficient Homemade Wood Furnace”

Hacked Heating Instruments For The DIY Biology Lab

[Justin] from The Thought Emporium takes on a common molecular biology problem with these homebrew heating instruments for the DIY biology lab.

The action at the molecular biology bench boils down to a few simple tasks: suck stuff, spit stuff, cool stuff, and heat stuff. Pipettes take care of the sucking and spitting, while ice buckets and refrigerators do the cooling. The heating, however, can be problematic; vessels of various sizes need to be accommodated at different, carefully controlled temperatures. It’s not uncommon to see dozens of different incubators, heat blocks, heat plates, and even walk-in environmental chambers in the typical lab, all acquired and maintained at great cost. It’s enough to discourage any would-be biohacker from starting a lab.

[Justin] knew It doesn’t need to be that way, though. So he tackled two common devices:  the incubator and the heating block. The build used as many off-the-shelf components as possible, keeping costs down. The incubator is dead simple: an insulated plastic picnic cooler with a thermostatically controlled reptile heating pad. That proves to be more than serviceable up to 40°, at the high end of what most yeast and bacterial cultures require.

The heat block, used to heat small plastic reaction vessels called Eppendorf tubes, was a little more complicated to construct. Scrap heat sinks yielded aluminum stock, which despite going through a bit of a machinist’s nightmare on the drill press came out surprisingly nice. Heat for the block is provided by a commercial Peltier module and controller; it looks good up to 42°, a common temperature for heat-shocking yeast and tricking them into taking up foreign DNA.

We’re impressed with how cheaply [Justin] was able to throw together these instruments, and we’re looking forward to seeing how he utilizes them. He’s already biohacked himself, so seeing what happens to yeast and bacteria in his DIY lab should be interesting.

Continue reading “Hacked Heating Instruments For The DIY Biology Lab”

The Art Of Making A Nixie Tube

Three years ago we covered [Dalibor Farnby]’s adventures in making his own Nixie tubes. Back then it was just a hobby, a kind of exploration into the past. He didn’t stop, and it soon became his primary occupation. In this video he shows the striking process of making one of his Nixie tubes.

Each of his tubes get an astounding amount of love and attention. An evolution of the process he has been working on for five years now. The video starts with the cleaning process for the newly etched metal parts. Each one is washed and dried before being taken for storage inside a clean hood. The metal parts are carefully hand bent. Little ceramic pins are carefully glued and bonded. These are used to hold the numbers apart from each other. The assembly is spot welded together.

In a separate cut work begins on the glass. The first part to make is the bottom which holds the wire leads. These are joined and then annealed. Inspection is performed on a polariscope and a leak detector before they are set aside for assembly. Back to the workbench the leads are spot welded to the frame holding the numbers.

It continues with amazing attention to detail. So much effort goes into each step. In the end a very beautiful nixie tube sits on a test rack, working through enough cycles to be certified ready for sale. The numbers crisp, clear, and beautiful. Great work keeping this loved part of history alive in the modern age.

Continue reading “The Art Of Making A Nixie Tube”