A homemade seven-segment OLED display

Making OLED Displays In The Home Lab

Just a general observation: when your project’s BOM includes ytterbium metal, chances are pretty good that it’s something interesting. We’d say that making your own OLED displays at home definitely falls into that category.

Of course, the making of organic light-emitting diodes requires more than just a rare-earth metal, not least of which is the experience in the field that [Jeroen Vleggaar] brings to this project. Having worked on OLEDs at Philips for years, [Jeroen] is well-positioned to tackle the complex process, involving things like physical vapor deposition and the organic chemistry of coordinated quinolones. And that’s not to mention the quantum physics of it all, which is nicely summarized in the first ten minutes or so of the video below. From there it’s all about making a couple of OLED displays using photolithography and the aforementioned PVD to build up a sandwich of Alq3, an electroluminescent organic compound, on a substrate of ITO (indium tin oxide) glass. We especially appreciate the use of a resin 3D printer to create the photoresist masks, as well as the details on the PVD process.

The displays themselves look fantastic — at least for a while. The organic segments begin to oxidize rapidly from pinholes in the material; a cleanroom would fix that, but this was just a demonstration, after all. And as a bonus, the blue-green glow of [Jeroen]’s displays reminds us strongly of the replica Apollo DSKY display that [Ben Krasnow] built a while back. Continue reading “Making OLED Displays In The Home Lab”

Making OLEDs In The Kitchen Sink

When [Ian] first set out to create a homebrew OLED, he found chemical suppliers that wouldn’t take his money, manufacturers that wouldn’t talk to him, and researchers that would actively discourage him. Luckily for us, he powered through all these obstructions and created his own organic LED.

Since at least one conductor in an OLED must be transparent, [Ian] settled on ITO – indium tin oxide – for the anode. This clear coating is deposited on glass, allowing it to conduct electricity and you can buy it through a few interesting suppliers. For the cathode, [Ian] is using a gallium-indium-tin eutectic, an alloy with a very low melting point that allowed him to deposit a small puddle in his OLED stack.

With the anode and cathode taken care of, the only thing left was the actual LED. For this, [Ian] had some success with MEH-PPV, a polymer that is capable of electroluminescence. On top of this is a film of PEDOT:PPS, another polymer that serves to block electrons.

The resulting yellow-green blob of an OLED actually works, and is at least as good as some of the other homebrew semiconductor illumination projects we’ve seen around here. This is only a start, though, and [Ian] plans on putting a whole lot more time into his explorations of organic LEDs.