Electronic Earrings Are PCB Art You Can Wear

If there’s one area of the human anatomy we rarely try to draw the eye, it’s the ears. Nonetheless, [DIY GUY Chris] has developed some LED earrings that should do exactly that.

The earrings are made using PCBs as the very body of the jewelry itself. The PCBs for each ear play host to eight WS2812 LEDs in a tiny 2020 form factor. The LEDs get their instructions from an ATtiny13-A AVR microcontroller, with some further supporting hardware to get everything playing happily together. Each earring runs off a single CR1220 coin cell, which sits on the obverse side of the earring to stay out of sight. The earrings are programmed with pogo pins to avoid the need for any bulky connectors.

By virtue of the tiny addressable LEDs, the earrings are capable of displaying full RGB colors. [DIY GUY Chris] has programmed the earrings with simple color fades, as well  as some fancier chase animations as well.

We’ve seen some great PCB jewelry before, too. Video after the break.

Continue reading “Electronic Earrings Are PCB Art You Can Wear”

This Solar-Powered Ear Ring Turns With The Sun

Jewelry making offers many opportunities for the electronics tinkerer, and on these pages we’ve seen some eye-catching creations using LEDs to great effect. They all have the same limitation though, it’s difficult to power something that tiny without a cumbersome battery. In seeking to solve that problem there have been a variety of inventive solutions tried, but they haven’t matched the approach of [Lloyd Konneker] who has turned the whole premise of most electronic jewelry on its head.

Instead of LEDs, the party trick of his earring is an electric motor that makes it spin, and instead of giving out light it takes it in as solar power.¬† The motor is a pager alert device, the solar cells are repurposed photodiodes, and the power is stored in a capacitor until there is enough to drive the motor, at which point a MOSFET is triggered to do the work. It’s all made possible by a Texas Instruments TPS3839 supply voltage supervisor chip, and it works well enough to turn from time to time in bright sunlight. The prototype uses a conventional PCB, but a better version is in the works with a flexible board.

His write-up should be of interest to anyone with a need to learn about micropower circuits, as it goes into significant detail on their tuning and operation. Last year’s Hackaday Prize had an entire section devoted to energy harvesting which is well worth searching the site for, a typical example was this solar powered microcontroller board.