An array of current or next-generation boosters powered by methalox engines.

How Methane Took Over The Booster World

Go back a generation of development, and excepting the shuttle-derived systems, all liquid rockets used RP-1 (aka kerosene) for their first stage. Now it seems everybody and their dog wants to fuel their rockets with methane. What happened? [Eager Space] was eager to explain in recent video, which you’ll find embedded below.

Space X Starship firing its many Raptor engines.
Space X Starship firing its many Raptor engines. The raptor pioneered the new generation of methalox. (Image: Space X)

At first glance, it’s a bit of a wash: the density and specific impulses of kerolox (kerosene-oxygen) and metholox (methane-oxygen) rockets are very similar. So there’s no immediate performance improvement or volumetric disadvantage, like you would see with hydrogen fuel. Instead it is a series of small factors that all add up to a meaningful design benefit when engineering the whole system.

Methane also has the advantage of being a gas when it warms up, and rocket engines tend to be warm. So the injectors don’t have to worry about atomizing a thick liquid, and mixing fuel and oxidizer inside the engine does tend to be easier. [Eager Space] calls RP-1 “a soup”, while methane’s simpler combustion chemistry makes the simulation of these engines quicker and easier as well.

There are other factors as well, like the fact that methane is much closer in temperature to LOX, and does cost quite a bit less than RP-1, but you’ll need to watch the whole video to see how they all stack up.

We write about rocketry fairly often on Hackaday, seeing projects with both liquid-fueled and solid-fueled engines. We’ve even highlighted at least one methalox rocket, way back in 2019. Our thanks to space-loving reader [Stephen Walters] for the tip. Building a rocket of your own? Let us know about it with the tip line.

Continue reading “How Methane Took Over The Booster World”

DIY 250 Lb Thrust Liquid Oxygen/Kerosene Rocket

Robert’s Rocket Project has been going on for a long time. It has been around so long that you can go all the way back to posts from 2001, where he talks about getting his first digital camera! The site is dedicated to his pursuit of liquid fueled rocket engine building. It’s a great project log and he has finally come to the point where he will be testing his first flight vehicle soon.

His latest project is a 250lbf regeneratively cooled engine. It uses kerosene as the fuel, and liquid oxygen as the oxidizer. The neat thing is he utilizes the temperature change of the liquid oxygen expanding to cool the chamber and nozzle before being burned. This allows for a very efficient and powerful combustion of the fuel. He has some videos of testing it on his site, we just wonder why he doesn’t host them on YouTube or something…

Anyhow, there’s more than enough info on his site to try and recreate some of his experiments, but perhaps you should start here instead: How to Design, Build and Test Small Liquid-Fuel Rocket Engines.

[Thanks Ray!]

Building A Rocket To Launch Your Project Into Space

At Hackaday, we’re familiar with projects that say they’re exploring space. Most of the time, these are high altitude balloons that ascend up to 100,000 feet. Sure, this is very, very high, but it’s only about 1/3rd of the way to lower limit of what can be called space at 100 km or 62 miles. Now, we’re seeing the first steps towards embedding Arduinos, cameras, and other goodies into the celestial spheres with the NE-1 Rocket, a project by [Jonathan McCabe] in Madison, Wisconsin.

The goal of the NE-1 rocket is to launch a 5kg payload into a suborbital trajectory to a height of 120 kilometers. From there, the payload – be it an electronic, biological, or simple imaging experiment – will experience a few minutes of weightlessness before falling back to Earth under a parachute.

Getting into space without the help of a government space agency has been done a few times before, mostly with solid-fuel rockets. [Jonathan]’s system uses a liquid-fueled engine, fed with nitrous oxide as the oxidizer and a secret self-pressurizing liquid fuel. These are fed into an engine that uses a ‘cold wall vortex’ to cool the engine instead circulating fuel around the combustion chamber as in traditional engines.

[Jonathan] has already done a few static tests with a half-scale engine, and he already has a lot of the very hard-to-source components in his lab. It’s a promising project. It falls right in line with the ‘Hackaday Space Program’ idea we’ve been kicking around, and we’d be more than happy to see this project get off the ground