3D Printing Pills All At Once

To the uninitiated, it might seem like a gimmick to 3D print pharmaceuticals. After all, you take some kind of medicine, pour it in a mold, and you have a pill, right? But researchers and even some commercial companies are 3D printing drugs with unusual chemical or physical properties. For example, pills with braille identification on them or antibiotics with complex drug-release rates. The Universidade de Santiago de Compostela and the University College London can now 3D print pills without relying on a layer-by-layer approach. Instead, the machine produces the entire pill directly.

According to a recent report on the study, there are at least two things holding back printed pills. First, anything medical has to go through rigorous testing for approval in nearly any country. In addition, producing pills at typical 3D printing speeds is uneconomical. This new approach uses multiple beams of light to polymerize an entire tank of resin at once in as little as seven seconds.

With 3D printed drugs, it is possible to tailor release profiles for individual cases and make hybrid drugs such as a French drug that joins anticancer drugs with another drug to manage side effects. Is this a real thing for the future? Will doctors collect enough data to make it meaningful to tailor drugs to patients? Will regulators allow it? For hybrid medicine, is there really an advantage over just taking two pills? Only time will tell.

Sure, technology can help dispense pills. We know, too, that 3D printing can be useful for prostheses and medical devices. We aren’t so sure about pharmaceuticals, but in the meantime you can already order custom-printed vitamins.

A Smart Bandage For Monitoring Chronic Wounds

Here at Hackaday, we’re always enthralled by cool biohacks and sensor development that enable us to better study and analyze the human body. We often find ourselves perusing Google Scholar and PubMed to find the coolest projects even if it means going back in time a year or two. It was one of those scholarly excursions that brought us to this nifty smart bandage for monitoring wound healing by the engineers of FlexiLab at Purdue University. The device uses an omniphobic (hydrophobic and oleophobic) paper-based substrate coupled with an onboard impedance analyzer (AD5933), an electrochemical sensor (the same type of sensor in glucometers) for measuring uric acid and pH (LMP91000), and a 2.4 GHz antenna for wirelessly transmitting the data (nRF24L01). All this is programmed with an Arduino Nano. They even released their source code.

To detect uric acid, they used the enzyme uricase, which is very specific to uric acid and exhibits low cross-reactivity with other compounds. They drop cast uric acid onto a silver/silver chloride electrode printed on the omniphobic paper. Similarly, to detect pH, they drop cast a pH-responsive polymer called polyaniline emeraldine salt (PANI-ES) between two separate silver/silver chloride electrodes. All that was left was to attach the electrodes to the LMP91000, do a bit of programming, and there they were with their own electrochemical sensor. The impedance analyzer was a bit simpler to develop, simply attaching un-modified electrodes to the AD5933 and placing the electrodes on the wound.

The authors noted that the device uses a much simpler manufacturing process compared to smart bandages published by other academics, being compatible with large-scale manufacturing techniques such as roll-to-roll printing. Overcoming manufacturing hurdles is a critical step in getting your idea into the hands of consumers. Though they have a long way to go, FlexiLab appears to be on the right track. We’ll check back in every so often to see what they’re up to.

Until then, take a look at some other electric bandage projects on Hackaday or even make your own electrochemical sensor.