Jet Engine Powers Tea Kettle

While there are plenty of places around the world to get a great cup of tea, no one has quite burned it into their culture like those in the United Kingdom. While they don’t have the climate to grow the plants themselves, they at least have figured out the art of heating water extremely rapidly in purpose-built electric kettles while the rest of us wait to heat water on our stoves and microwaves. But that’s still not fast enough for some, like [Finlay Shellard], who just completed this jet-powered tea kettle.

[Finlay] took some inspiration cues and parts from another jet engine he had on hand that was powering his toaster. This is a pulse jet design, which is welded together from laser-cut pieces of sheet metal with guides welded in place to allow water to flow around the combustion chamber and exhaust. Pressurized water sits in a reservoir at the top of the engine, and when it is up to temperature, a valve allows it to flow to the engine to heat up. When it has passed the jet engine section, it passes a tea bag holder and then out of a spout at the end of the engine.

A few tests at 100 PSI had the hot tea exiting the engine in a non-linear fashion, so the pressure was reduced. The device now makes tea at incredibly fast speeds, with the only downsides being access to some sort of jet fuel, and also the need for a protective hearing device of some sort. For anyone attempting to do this themselves, take a look at this build which includes a turbocharger design for improved efficiency of the pulse jet itself.

Continue reading “Jet Engine Powers Tea Kettle”

resin printed pulsejet engine in operation

A Detonation Engine Prototyped Using Resin Printing

Over the years [Integza] has blown up or melted many types of jet engine, including the humble pulsejet. Earlier improvements revolved around pumping in more fuel, or forced air intakes, but now it’s time for a bit more refinement of the idea, and he takes a sidestep towards the more controllable detonation engine. His latest experiment (video, embedded below) attempts to dial-in the concept a little more. First he built a prototype from a set of resin printed parts, with associated tubing and gas control valves, and a long acrylic tube to send the exhaust down. Control of the butane and air injection, as well as triggering of the spark-ignition, are handled by an Arduino — although he could have just used a 555 timer — driving a few solid state relays. This provided some repeatable control of the pulse rate. This is a journey towards a very interesting engine design, known as the rotating detonation engine. This will be very interesting to see, if he can get it to work.

supersonic exhaust plume from a pulsejet engine
Supersonic exhaust plume with the characteristic ‘mushroom’ shape

Detonation engines operate due to the pressure part of the general thrust equation, where the action is in the detonative combustion. Detonative combustion takes place at constant pressure, which theoretically should lead to a greater efficiency than boring old deflagration, but the risks are somewhat higher. Apparently this is tricky to achieve with a fuel/air mix, as there just isn’t enough oomph in the mixture. [Integza] did try adding a Shchelkin spiral (we call them springs around here) which acts to slow down the combustion and shorten the time taken for it to transition from deflagration to detonation.

It sort of worked, but not well enough, so running with butane and pure oxygen was the way forward. This proved the basic idea worked, and the final step was to rebuild the whole thing in metal, with CNC machined end plates and some box section clamped with a few bolts. This appeared to work reasonably well at around 10 pulses/sec with some measurable thrust, but not a lot. More work to be done we think.

We hinted at earlier work on forced-air pulsejets, so here that is. Of course, whilst we’re on the subject of pulsejets, we can’t not mention [Colinfurze] and his pulsejet go kart.

Continue reading “A Detonation Engine Prototyped Using Resin Printing”

3D Printed Pulsejet Uses Tesla Valve

For most people, a jet is a jet. But there are several different kinds of jet engines, depending on how they operate. You frequently hear about ramjets, scramjets, and even turbojets. But there is another kind — a very old kind — called a pulsejet. [Integza] shows how he made one using 3D printed parts and also has a lot of entertaining background information. You can see the video below. (Beware, there is a very little bit of off-color language and humor in the video, so you might not want to watch this one at work.)

They are not ideal from a performance standpoint, but they are easy to make. How easy? A form of pulsejet was accidentally discovered by a young Swiss boy playing with alcohol in the early 1900s. Because of their simplicity, they’ve been built by lots of different people, including rocket pioneer Robert Goddard, who mounted one to a bicycle.

Continue reading “3D Printed Pulsejet Uses Tesla Valve”

Riding Rockets And Jets Around The Frozen Wastes Of Sweden

An attentive reader tipped us off to the guys at Mobacken Racing (translation), a group of Swedes dedicated to the art and craft of putting jet and rocket engines on go karts and snowmobiles.

One of the simpler builds is a pulse jet sled. Pulse jets are extremely simple devices – just a few stainless steel tubes welded together and started with a leaf blower. The simplicity of a pulse jet lends itself to running very hot and very loudly; the perfect engine for putting the fear of a Norse god into the hearts of racing opponents.

Pulse jets are a bit too simple for [Johansson], so he dedicates his time towards building a jet turbine engine. Right now it’s only on a test stand, but there’s still an awesome amount of thrust coming out of that thing, as shown in the video after the break.

In our humble opinion, the most interesting build is the 1000 Newton liquid fuel rocket engine. The liquid-cooled engine guzzles NOX and methanol, and bears a striking resemblance to liquid fuel engines we’ve seen before. Sadly, there are no videos of this engine being fired (only pics of it strapped to a go-kart), but sit back and watch a couple other hilariously overpowered engines disturbing a tranquil sylvan winter after the break.

Edit: [Linus Nilsson] wrote in to tell us while the guys at Mobacken Racing are good friends, [Linus], his brother, and third guy (his words) are responsible for the pulse jet sled. The pulse jet is actually ‘valved’ and not as simple as a few stainless steel tubes. The pulse jet isn’t started by a leaf blower, either, but a four kilowatt fan. [Linus]’ crew call themselves Svarthalet racing, and you can check out the Google translation here.

Continue reading “Riding Rockets And Jets Around The Frozen Wastes Of Sweden”