Building The World’s Smallest Jet Turbine By Hand

There are very few machines as complex to build as a turbojet engine. The turbine blades on a commercial airliner are grown from a single crystal of metal. The engineering tolerances are crazy, and everything spins really, really fast. All of these problems aren’t a concern for [Igor], who’s building what will probably end up being the world’s smallest turbojet engine. He’s doing it in his home shop, and a lot of the work is being done by hand. We don’t know the Russian translation for ‘hold my beer’, but [Igor] certainly does.

The design of this turbojet — as far as we can tell — is a centrifugal flow turbine, or something that’s not terribly different than the projects we’ve seen that turn the turbocharger from a diesel engine into a jet. The innovation here is using a lathe to machine the compressor stages by mounting an end mill to the headstock and the compressor blank on the cross slide, in a rotary table. It’s weird, but you really can’t argue with something that looks like it’ll work.

[Igor] has made a name for himself by creating some crazy contraptions. The most impressive, by far, is a gigantic remote controlled plane, powered by a handmade jet engine. This is an enormous fiberglass plane with a homebrew engine that spins at 90,000 RPM and doesn’t fly apart. That’s impressive by any measure.

[Igor] is posting a lot of his build process on YouTube and Instagram, including heat treating the compressor stages with a blowtorch. This is an amazing project, and even if this tiny turbine will be able to self-sustain, that’s an amazing accomplishment. You can check out a few more videos from [Igor] below.

Continue reading “Building The World’s Smallest Jet Turbine By Hand”

JB Weld – Strong Enough To Repair a Connecting Rod?

JB Weld is a particularly popular brand of epoxy, and features in many legends. “My cousin’s neighbour’s dog trainer’s grandpa once repaired a Sherman tank barrel in France with that stuff!” they’ll say. Thankfully, with the advent of new media, there’s a wealth of content out there of people putting these wild and interesting claims to the test. As the venerable Grace Hopper once said, “One accurate measurement is worth a thousand expert opinions“, so it’s great to see these experiments happening.

[Project Farm] is one of them, this time attempting to repair a connecting rod in a small engine with the sticky stuff. The connecting rod under test is from a typical Briggs and Stratton engine, and is very much the worse for wear, having broken into approximately 5 pieces. First, the pieces are cleaned with a solvent and allowed to properly dry, before they’re reassembled piece by piece with lashings of two-part epoxy. Proper technique is used, with the epoxy being given plenty of time to cure.

The result? Sadly, poor — the rod disintegrates in mere seconds, completely unable to hold together despite the JB Weld’s best efforts. It’s a fantastic material, yes – but it can’t do everything. Perhaps it could be used to cast a cylinder head instead?

Continue reading “JB Weld – Strong Enough To Repair a Connecting Rod?”

Results of 3D-Printed Cylinder Head Testing Fail to Surprise

It’s the suburbanista’s weekend nightmare: you’re almost done with the weekly chores, taking the last few passes with the lawn mower, when you hear a pop and bang. The cylinder head on your mower just blew, and you’re out of commission. Or are you? You’ve got a 3D printer – couldn’t it save the day?

If this bench test of plastic cylinder heads is any indication, it’s possible – just as long as you’ve only got 40 seconds of mowing left to do. [Project Farm] has been running all sorts of tests on different materials as field-expedient cylinder heads for small gasoline engines, using everything from JB Weld epoxy to a slab of walnut. For this test, two chunky heads were printed, one from ABS, of the thermochromic variety apparently, the other in PLA. The test went pretty much as expected for something made of thermoplastic exposed to burning gasoline at high pressure, although ABS was the clear winner with two 40-second runs. The PLA only lasted half as long before the spark plug threads melted and the plug blew out. A gasket printed from flexible filament was also tested, with predictably awful results.

As bad as all this was, it still shows that 3D-printed parts are surprisingly tough. Each part was able to perform decently under a compression test, showing that they can stand up to pressure as long as there’s no heat. If nothing else, it was a learning experience. And as an aside, the cylinder heads were printed by [Terry] from the RedNeckCanadians YouTube channel. That video is worth a watch, if just for a few tips on making a 3D-printed copy of an object. Continue reading “Results of 3D-Printed Cylinder Head Testing Fail to Surprise”

Out Of Batteries For Your Torch? Just Use A Mini Nitro Engine

We can certainly relate to an incomplete project sowing the seed for a better one, and that’s just what happened in [JohnnyQ90]’s latest video. He initially set out to create an air compressor powered by a nitro engine, and partially succeeded – air was compressed, but not nearly enough to be useful.

Instead, he changed tack and decided to use the 1 cc engine to make a small electric generator. [JohnnyQ90] is, of course, no stranger to the nitro engine, having previously brought us the micro chainsaw conversion, and nitro powered rotary tool. This time round, the build is a conceptually simple task: connect an engine to a DC motor and you’re done. But physically implementing it in an elegant way is a different story, and this is always where [JohnnyQ90] shines; we never get tired of watching him produce precision parts on the lathe. A fuel tank is made from a modified Zippo can and, courtesy of a CNC milled fan and 3D printed shroud, the motor air cools itself.

Towards the end of the video, [JohnnyQ90] plays with the throttle a little, causing the bulb connected to the generator to brighten accordingly. It might be fun to control the throttle with a servo and try to regulate the voltage on the output under different load conditions.

We love novel ways of creating electricity; previously we’ve written about how to generate power from a coke can, as well as this 120 W thermoelectric generator (TEG) setup.

Continue reading “Out Of Batteries For Your Torch? Just Use A Mini Nitro Engine”

Retrotechtacular: Constructing A Car Engine

Oxford is a city world-famous for its university, and is a must-see stop on the itinerary of many a tourist to the United Kingdom. It features mediaeval architecture, unspoilt meadows, two idylic rivers, and a car plant. That’s the part the guide books don’t tell you, if you drive a BMW Mini there is every chance that it was built in a shiny new factory on the outskirts of the historic tourist destination.

A 1930s Morris Ten Series II. Humber79 [CC BY-SA 3.0].
A 1930s Morris Ten Series II. Humber79 [CC BY-SA 3.0].
The origins of the Mini factory lie over the road on a site that now houses a science park but was once the location of the Morris Motors plant, at one time Britain’s largest carmaker. In the 1930s they featured in a British Pathé documentary film which we’ve placed below the break, part of a series on industry in which the production of an internal combustion engine was examined in great detail. The music and narration is charmingly of its time, but the film itself is not only a fascinating look inside a factory of over eight decades ago, but also an insight into engine manufacture that remains relevant today even if the engine itself bears little resemblance to the lump in your motor today.

Morris produced a range of run-of-the-mill saloon cars in this period, and their typical power unit was one of the four-cylinder engines from the film. It’s a sidevalve design with a three-bearing crank, and it lacks innovations such as bore liners. The metallurgy and lubrication in these engines was not to the same standard as an engine of today, so a prewar Morris owner would not have expected to see the same longevity you’d expect from your daily.

Continue reading “Retrotechtacular: Constructing A Car Engine”

Build Your Own Avionics Suite, If You Dare

If you’re really interested in aircraft and flying, there are many ways to explore that interest. There are models of a wide range of sizes and complexities that are powered and remote-controlled, and even some small lightweight aircraft that can get you airborne yourself for a minimum of expense. If you’re lucky enough to have your own proper airplane, though, and you’re really into open source projects, you can also replace your airplane’s avionics kit with your own open source one.

Avionics are the electronics that control and monitor the aircraft, and they’re a significant part of the aircraft’s ability to fly properly. This avionics package from [j-omega] (who can also be found on hackaday.io) will fit onto a small aircraft engine and monitor things like oil temperature, RPM, coolant temperature, and a wide array of other features of the engine. It’s based on an ATmega microcontroller, and has open-source schematics for the entire project and instructions for building it yourself. Right now it doesn’t seem like the firmware is available on the GitHub page yet, but will hopefully be posted soon for anyone who’s interested in an open-source avionics package like this.

The project page does mention that this is experimental as well, so it might not be advised to use in your own personal aircraft without some proper testing first. That being said, if you’ve heard that warning and have decided just to stay on the ground, it’s possible to have a great experience without getting in a real airplane at all.

See-Through Rotary Engine Reveals Wankel Magic

The Wankel rotary engine is known for its troubled life in the mainstream automotive industry, its high power-to-weight ratio, and the intoxicating buzz it makes at full tilt. Popular with die-hard enthusiasts and punishing to casual owners, it stands as perhaps the most popular alternative internal combustion design to see the light of day. There are myriad diagrams out there to explain its operation, but what if you could see inside?

The video comes courtesy of [Warped Perception], and features a small Wankel rotary engine intended for model aircraft. The engine’s end plate is removed and replaced with a transparent plate, making the combustion process visible. Add in a high-speed camera, and you’ve got a recipe for a great technical video.

It starts with a basic explanation of how the Wankel rotary power cycle operates, before cutting to the glorious slow-motion shots of the engine in operation. It also highlights several techniques useful for producing this type of video, such as painting surrounding components black to make it easier to image the parts of interest. The visuals are amazing and very clearly show the  manner in which the intake, compression, power and exhaust strokes function in the engine.

Continue reading “See-Through Rotary Engine Reveals Wankel Magic”