Custom Cut Pinwheel Makes a Useful HVAC Duct Flow Meter

Everyone is familiar with pinwheels, and few of us haven’t crafted one from a square of paper, a stick, and a pin. Pinwheels are pretty optimized from a design standpoint, and are so cheap and easy to build that putting a pinwheel to work as an HVAC duct flow meter seems like a great idea.

Great in theory, perhaps, but as [ItMightBeWorse] found out, a homemade pinwheel is far from an ideal anemometer. His experiments in air duct flow measurements, which previously delved into ultrasonic flow measurement, led him to try mechanical means. That calls for some kind of turbine producing a signal proportional to air flow, but a first attempt at using a computer fan with brushless DC motor failed when a gentle airflow couldn’t overcome the drag introduced by the rotor magnets. But a simple pinwheel, custom cut from patterns scaled down from a toy, proved to be just the thing. A reflective optosensor counts revolutions as the turbine spins in an HVAC duct, and with a little calibration the rig produces good results. The limitations are obvious: duct turbulence, flimsy construction, and poor bearings. But for a quick and dirty measurement, it’s not bad.

Looking for an outdoor anemometer rather than an HVAC flow meter? We’ve got one made from an old electric motor, or a crazy-accurate ultrasonic unit.

Continue reading “Custom Cut Pinwheel Makes a Useful HVAC Duct Flow Meter”

The Last Interesting Chrysler Had a Gas Turbine Engine

The piston engine has been the king of the transportation industry for well over a century now. It has been manufactured so much that it has become a sort of general-purpose machine that can be used to do quite a bit more than merely move people and cargo from one point to another. Running generators, hydraulic systems, pumps, and heavy machinery are but a few examples of that.

Scale production of this technology also had the effect of driving prices for these engines down, and now virtually everyone in the developed world has cheap and easy access to them. In the transportation world, at least, it looks like its reign might finally be coming to a slow, drawn-out conclusion as electric cars capture more and more market share.

Electric motors aren’t the first technology to try to topple the piston engine from its apex position on top of our modern transportation industry, though. In the 1960s another technology, the gas turbine engine, tried to replace it — and failed.

Continue reading “The Last Interesting Chrysler Had a Gas Turbine Engine”

DIY Wind Turbine for Free Energy

With electricity cost going up and the likes of British Gas hiking up their price, everyone could use a bit of free energy. There are a number of ways to harvest renewable energy including solar and wind, however, the cost of setting up a wind farm can be quite high. [Mr Tickles] has uploaded a video where he has a cheaper DIY method of making a DIY wind turbine.

His project uses a commercial ceiling fan as a turbine for converting the wind energy into electricity. PVC pipes are used to mount the entire thing such that it becomes portable. A cardboard fin is used to make the propeller face the wind but there are plans to upgrade it in the future. [Mr Tickles] demonstrates his project by lighting up a lamp and then charging a cell phone.

For the price, this hack is pretty neat and can be extended to work with larger fans. For those who are looking at an even simpler version of this build, check out the most straightforward wind turbine.

Continue reading “DIY Wind Turbine for Free Energy”

The Most Straightforward Wind Turbine

We can all use a little more green energy in our lives at home. So when [ahmedebeed555] — a fan of wind power — ran into durability troubles with his previous home-built turbine, he revised it to be simpler than ever to build.

Outside of the DC generator motor, the rest of the turbine is made from recycled parts: a sponge mop sans sponge, a piece from an old CD drive case acting as a rudder, the blades from a scrapped fan, and a plastic bottle to protect the motor from the elements. Attach the fan to the motor and form the plastic bottle around the motor using — what else? — a soldering iron. Don’t forget a respirator for this step, folks.

Continue reading “The Most Straightforward Wind Turbine”

Hacking Into…. A Wind Farm?

Pick a lock, plug in a WiFi-enabled Raspberry Pi and that’s nearly all there is to it.

There’s more than that of course, but the wind farms that [Jason Staggs] and his fellow researchers at the University of Tulsa had permission to access were — alarmingly — devoid of security measures beyond a padlock or tumbler lock on the turbines’ server closet. Being that wind farms are generally  in open fields away from watchful eyes, there is little indeed to deter a would-be attacker.

[Staggs] notes that a savvy intruder has the potential to shut down or cause considerable — and expensive — damage to entire farms without alerting their operators, usually needing access to only one turbine to do so. Once they’d entered the turbine’s innards, the team made good on their penetration test by plugging their Pi into the turbine’s programmable automation controller and circumventing the modest network security.

The team are presenting their findings from the five farms they accessed at the Black Hat security conference — manufacturers, company names, locations and etc. withheld for obvious reasons. One hopes that security measures are stepped up in the near future if wind power is to become an integral part of the power grid.

All this talk of hacking and wind reminds us of our favourite wind-powered wanderer: the Strandbeest!

[via WIRED]

3D-Printed Turbine Rotary Tool Tops 40,000 RPM

For your high speed, low torque needs, few things beat a rotary tool like a Dremel. The electric motor has its limits, though, they generally peak out at 35,000 rpm or so. Plus there’s the dust and the chips to deal with from whatever you’re Dremeling, so why not kill two birds with one stone and build a turbine-driven rotary tool attachment for your shop vac?

Another serious shortcoming of the electric Dremels that is addressed by [johnnyq90]’s 3D-printed turbine is the lack of that dentist’s office whine. His tool provides enough of that sound to trigger an attack of odontophobia as it tops out at 43,000 rpm. The turbine’s stator and rotors are 3D-printed, as is the body, inlet scoop, and adapter for the vacuum line. A shaft from an old rotary tool is reused, but a new one could be turned pretty easily. The video below shows the finished tool in action; there’ll no doubt be objections in the comments to ingesting dust, chips, and incandescent bits of metal, but our feeling is that the turbine will hold up to these challenges pretty well. Until it doesn’t, that is.

We like [johnnyq90]’s design style, which you may recall from his micro Tesla turbine or nitro-powered rotary tool. He sure likes things that spin fast.

Continue reading “3D-Printed Turbine Rotary Tool Tops 40,000 RPM”

Daedalus Jet Suit Takes to the Skies

[Richard Browning] wants to fly like Daedalus. To us, it looks a bit more like Iron Man. [Browning] is working on project Daedalus, a flight suit powered by six jet engines. These turbines are exactly the type one would find on large, fast, and expensive R/C planes. Some of this is documented on his YouTube channel, Gravity Industries, though RedBull has also gotten involved and have a video of their own that you can check out after the break.

The project started last year in [Browning’s] garage. He strapped a jet to an old washing machine to test its thrust. The jet nearly flipped the machine over, so he knew he would have enough power to fly. The suit started with a turbine strapped to each arm. Then it became two on each arm. This was enough for moonlike hops, but not enough for actual flight. Strapping an engine to each leg worked but was rather hard to control. The current configuration features two turbines per arm, and two on a backpack.

The whole setup is quite similar to [Frank Zapata]’s Flyboard Air, with one key difference – [Browning] is supporting two thirds of his weight with his hands. The effect is similar to supporting oneself on gymnastic rings, which is part of his extreme physical training regimen.

Continue reading “Daedalus Jet Suit Takes to the Skies”