The First New Long Wave Radio Station Of This Millennium

The decline of AM broadcast radio is a slow but inexorable process over much of the world, but for regions outside America there’s another parallel story happening a few hundred kilohertz further down the spectrum. The long wave band sits around the 200kHz mark and has traditionally carried national-level programming due to its increased range. Like AM it’s in decline due to competition from FM, digital, and online services, and one by one the stations that once crowded this band are going quiet. In the middle of all this it’s a surprise then to find a new long wave station in the works in the 2020s, bucking all contemporary broadcasting trends. Arctic 252 is based in Finland with programming intended to be heard across the Arctic region and aims to start testing in September.

The hack in this is that it provides an opportunity for some low-frequency DXing, and given the arctic location, it would be extremely interesting to hear how far it reaches over the top of the world into the northern part of North America. The 252KHz frequency is shared with a station in North Africa that may hinder reception for some Europeans, but those with long memories in north-west Europe will find it fairly empty as it has been vacated in that region by the Irish transmitter which used to use it.

So if you have a receiver capable of catching long wave and you think you might be in range, give it a listen. Closer to where this article is being written, long wave stations are being turned off.

Harris & Ewing, photographer, Public domain.

Be Your Own DJ With QN8066 And An Arduino Library

The QN8066 is a fun little FM transmitter chip. It covers the full FM broadcast band and has built-in DSP. You would find this sort of part in car cell phone adapters before every vehicle included Bluetooth or an AUX port.  [Ricardo] has created an Arduino library to bring the QN8066 to the masses.

The chip is rather easy to use – control is handled with a common I2C interface. All the complex parts – Phase Locked Loop (PLL), RF front end, power management, and audio processing are all hidden inside. [Ricardo’s] library makes it even easier to use. One of the awesome features of the 8066 is the fact that it handles Radio Data System (RDS). RDS is the subcarrier datastream that allows FM stations to inject information like song title and artist into the signal. The data is then displayed on your radio screen.

You can find the source to [Ricardo’s] library on GitHub. Using it is as simple as picking it up from the Arduino IDE.

If you are looking for an RDS-enabled radio to test out your QN8066 design, you wouldn’t do too bad with this Gameboy cartridge receiver.

Click through the break for a video from [Ricardo] explaining his QN8066 design. Continue reading “Be Your Own DJ With QN8066 And An Arduino Library”

CW Not Hard Enough? Try This Tiny Paddle

For a long time, a Morse code proficiency was required to obtain an amateur radio license in many jurisdictions around the world, which was a much higher bar of entry than most new hams have to pass. Morse, or continuous wave (CW) is a difficult skill to master, and since the requirement has been dropped from most licensing requirements few radio operators pick up this skill anymore. But if you like a challenge, and Morse itself isn’t hard enough for you, you might want to try out this extremely small Morse paddle.

Originally meant for portable operation, where hiking to something like a mountain top with radio gear demands small, lightweight, and low-power options, this paddle is actually not too complex. It attaches to most radios with a 3.5 mm stereo cable and only has two paddles on flexible metal arms which, when pressed against the center of the device, tell the radio to either produce continuous “dits” or “dahs”. For portable use the key sits inside a tiny plastic case and only needs to be pulled out and flipped around to get started. And, while not waterproof, [N6ARA] reports that it’s so small you likely could just shield it from the rain with your other hand if you needed to.

Presumably, this paddle actually wouldn’t be that much different than using any other paddle except for the fact that it’s not heavy enough to resist the force of use, so you’d have to hold it with your other hand anyway. And, while this is a product available for purchase it’s simple enough that, presumably, the design could easily be duplicated with just a few parts. Paddles like this were made as an improvement to older technology like straight keys which require the operator to produce the correct lengths of tones for each character manually. While you can get higher speeds with a paddle, there are still some dedicated CW operators using a straight key.

Continue reading “CW Not Hard Enough? Try This Tiny Paddle”

Going Ham Mobile On A Bicycle

It’s said that “Golf is a good walk spoiled,” so is attaching an amateur radio to a bike a formula for spoiling a nice ride?

Not according to [Wesley Pidhaychuk (VA5MUD)], a Canadian ham who tricked out his bike with a transceiver and all the accessories needed to work the HF bands while peddling along. The radio is a Yaesu FT-891, a workhorse mobile rig covering everything from the 160-meter band to 6 meters. [Wes] used some specialized brackets to mount the radio’s remote control head to the handlebars, along with an iPad for logging and a phone holder for streaming. The radio plus a LiFePO4 battery live in a bag on the parcel rack in back. The antenna is a Ham Stick mounted to a mirror bracket attached to the parcel rack; we’d have thought the relatively small bike frame would make a poor counterpoise for the antenna, but it seems to work fine — well enough for [Wes] to work some pretty long contacts while pedaling around Saskatoon, including hams in California and Iowa.

The prize contact, though, was with [WA7FLY], another mobile operator whose ride is even more unique: a 737 flying over Yuma, Arizona. We always knew commercial jets have HF rigs, but it never occurred to us that a pilot who’s also a ham might while away the autopilot hours working the bands from 30,000 feet. It makes sense, though; after all, if truckers do it, why not pilots?

Continue reading “Going Ham Mobile On A Bicycle”

Hackaday Links Column Banner

Hackaday Links: July 7, 2024

Begun, the Spectrum Wars have. First, it was AM radio getting the shaft (last item) and being yanked out of cars for the supposed impossibility of peaceful coexistence with rolling broadband EMI generators EVs. That battle has gone back and forth for the last year or two here in the US, with lawmakers even getting involved at one point (first item) by threatening legislation to make terrestrial AM radio available in every car sold. We’re honestly not sure where it stands now in the US, but now the Swiss seem to be entering the fray a little up the dial by turning off all their analog FM broadcasts at the end of the year. This doesn’t seem to be related to interference — after all, no static at all — but more from the standpoint of reclaiming spectrum that’s no longer turning a profit. There are apparently very few analog FM receivers in use in Switzerland anymore, with everyone having switched to DAB+ or streaming to get their music fix, and keeping FM transmitters on the air isn’t cheap, so the numbers are just stacked against the analog stations. It’s hard to say if this is a portent of things to come in other parts of the world, but it certainly doesn’t bode well for the overall health of terrestrial broadcasting. “First they came for AM radio, and I did nothing because I’m not old enough to listen to AM radio. But then they came for analog FM radio, and when I lost my album-oriented classic rock station, I realized that I’m actually old enough for AM.”

Continue reading “Hackaday Links: July 7, 2024”

Hacking A Quansheng Handheld To Transmit Digital Modes

Have you ever thought about getting into digital modes on the ham bands? As it turns out, you can get involved using the affordable and popular Quansheng UV-K6 — if you’re game to modify it, that is. It’s perfectly achievable using the custom Mobilinkd firmware, the brainchild of one [Rob Riggs].

In order to efficiently transmit digital modes, it’s necessary to make some hardware changes as well. Low frequencies must be allowed to pass in through the MIC input, and to pass out through the audio output. These are normally filtered out for efficient transmission of speech, but these filters mess up digital transmissions something fierce.  This is achieved by messing about with some capacitors and bodge wires. Then, one can flash the firmware using a programming cable.

With the mods achieved, the UV-K6 can be used for transmitting in various digital modes, like M17 4-FSK. The firmware has several benefits, not least of which is cutting turnaround time. This is the time the radio takes to switch between transmitting and receiving, and slashing it is a big boost for achieving efficient digital communication. While the stock firmware has an excruciating slow turnaround of 378 ms, the Mobilinkd firmware takes just 79 ms.

Further gains may be possible in future, too. Bypassing the audio amplifier could be particularly fruitful, as it’s largely in the way of the digital signal stream.

Quansheng’s radios are popular targets for modification, and are well documented at this point.

So Much Going On In So Few Components: Dissecting A Microwave Radar Module

In the days before integrated circuits became ubiquitous, providing advanced functionality in a single package, designers became adept at extracting the maximum use from discrete components. They’d use clever circuits in which a transistor or other active part would fulfill multiple roles at once, and often such circuits would need more than a little know-how to get working. It’s not often in 2024 that we encounter this style of circuit, but here’s [Maurycy] with a cheap microwave radar module doing just that.

Continue reading “So Much Going On In So Few Components: Dissecting A Microwave Radar Module”