OPARP Telepresence Robot

[Erik Knutsson] is stuck inside with a bunch of robot parts, and we know what lies down that path. His Open Personal Assistant Robotic Platform aims to help out around the house with things like filling pet food bowls, but for now, he is taking one step at a time and working out the bugs before adding new features. Wise.

The build started with a narrow base, an underpowered RasPi, and a quiet speaker, but those were upgraded in turn. Right now, it is a personal assistant on wheels. Alexa was the first contender, but Mycroft is in the spotlight because it has more versatility. At first, the mobility was a humble web server with a D-pad, but now it leverages a distance sensor and vision, and can even follow you with a voice command.

The screen up top gives it a personable look, but it is slated to become a display for everything you’d want to see on your robot assistant, like weather, recipes, or a video chat that can walk around with you. [Erik] would like to make something that assists the elderly who might need help with chores and help connect people who are stuck inside like him.

Expressive robots have long since captured our attention and we’re nuts for privacy-centric personal assistants.

Continue reading “OPARP Telepresence Robot”

Robotic Mouse Toy Built For Cats

Cats are nature’s born hunters. Whether its rodents, insects, or lasers, they’ll pounce and attack with ruthless efficiency. Built to challenge a cat, or perhaps merely to tease it, Sourino is a robotic mouse built with common off-the-shelf parts.

A test subject appears unamused.

So named for the combination of Souris (French for “mouse”) and Arduino, the project is driven by an Arduino Nano. Hooked up to three sets of ultrasonic transducers, this gives the robot mouse much improved obstacle avoidance abilities compared to using just a single transducer front-and-centre. The ‘bot can navigate basic mazes or household floors with ease. A pair of geared motors are used for drive, using simple skid-steering to turn corners. It’s all packed in a 3D printed enclosure, which mounts the various components and exposes the ultrasonic sensors. There’s even an IR remote enabling mode selection or full manual control.

While the ‘bot lacks the speed and agility of common house mice, it’s nevertheless a project that teaches plenty of valuable lessons. We’re sure [Electrocat01] picked up plenty of skills in robotic navigation, mechanical design and 3D printing along the way. Creating robot mice is actually a competitive field, as we’ve seen before. Video after the break.

Continue reading “Robotic Mouse Toy Built For Cats”

Tiny Robot Beetle Runs On Alcohol

Batteries have come a long way in the past few centuries, but pale in comparison to hydrocarbon fuels when it comes to energy density. When it comes to packing plenty of juice in a light, compact package, hydrocarbons are the way to go. Recently, researchers have begun to take advantage of this, powering small robots with liquid fuels. Just like Bending Unit 22, aka Bender Bending Rodriguez, this tiny robotic beetle runs on alcohol.

Robeetle can carry up to 2.6 times its own weight, using Nitinol muscle wires to move its legs.

Affectionately named Robeetle, the tiny ‘bot weighs just 88 milligrams, comparable in mass its insectoid contemporaries. It stores methanol in a polyimide film tank, operating for up to 2 hours on a single fill.  As shown in the video, a solely mechanical control system is used to actuate the robot’s legs. In the neutral state, vents in the fuel tank are open, releasing methanol vapor. This passes over nitinol muscle wires coated in a special catalyst which causes the combustion of the methanol, heating the wires. The wires then contract, moving the legs, and closing the vents. When the wire cools, the wires relax, opening the vents and beginning the cycle anew.

While the ‘bot is solely capable of walking in a single direction, it nevertheless shows the possibilities enabled by powering small devices from energy-dense fuels. Waiting for improved battery technologies to develop is such a bore, after all. We look forward to swarms of such ‘bots exploring disaster areas or performing environmental sampling in years to come. The scientific paper outlines the research outcomes in detail.

We love tiny robots at Hackaday; we’ve featured a few in the past, too. Video after the break.

Continue reading “Tiny Robot Beetle Runs On Alcohol”

Assistive Gloves Come In Pairs

We have to hand it to this team, their entry for the 2020 Hackaday Prize is a classic pincer maneuver. A team from [The University of Auckland] in New Zealand and [New Dexterity] is designing a couple of gloves for both rehabilitation and human augmentation. One style is a human-powered prosthetic for someone who has lost mobility in their hand. The other form uses soft robotics and Bluetooth control to move the thumb, fingers, and an extra thumb (!).

The human-powered exoskeleton places the user’s hand inside a cabled glove. When they are in place, they arch their shoulders and tighten an artificial tendon across their back, which pulls their hand close. To pull the fingers evenly, there is a differential box which ensures pressure goes where it is needed, naturally. Once they’ve gripped firmly, the cables stay locked, and they can relax their shoulders. Another big stretch and the cords relax.

In the soft-robotic model, a glove is covered in inflatable bladders. One set spreads the fingers, a vital physical therapy movement. Another bladder acts as a second thumb for keeping objects centered in the palm. A cable system draws the fingers closed like the previous glove, but to lock them they evacuate air from the bladders, so jamming layers retain their shape, like food in a vacuum bag.

We are excited to see what other handy inventions appear in this year’s Hackaday Prize, like the thumbMouse, or how about more assistive tech that uses hoverboards to help move people?

Continue reading “Assistive Gloves Come In Pairs”

Robots With A Delicate Touch Assemble PlayStation 4

Sony’s video game division is gearing up for their upcoming PlayStation 5, pushing its predecessor PlayStation 4 off the spotlit pedestal. One effect of this change is Sony ever so slightly relaxing secrecy surrounding the PS4, allowing [Nikkei Asian Review] inside a PlayStation 4 final assembly line.

This article was written to support Sony and PlayStation branding for a general audience, thus technical details are few and far in between. This shouldn’t be a huge surprise given how details of mass production can be a competitive advantage and usually kept as trade secrets by people who knew to keep their mouths shut. Even so, we get a few interesting details accompanied by many quality pictures. Giving us a glimpse into an area that was formerly off-limits to many Sony employees never mind external cameras.

The quoted engineers are proud of their success coaxing robots to assemble soft and flexible objects, and rightly so. Generally speaking robots have a hard time handling non-rigid objects, but this team has found ways to let their robots handle the trickier parts of PS4 assembly. Pick up wiring bundles and flat ribbon cables, then plug them into circuit board connectors with appropriate force. Today’s automated process is the result of a lot of engineers continually evolving and refining the system. The assembly machines are covered with signs of those minds at work. From sharpie markers designating positive and negative travel directions for an axis, to reminders written on Post-It notes, to assembly jig parts showing the distinct layer lines of 3D printing.

We love seeing the result of all that hard work, but lament the many interesting stories still untold. We would have loved a video showing the robots in action. For that, the record holder is still Valve who provided an awesome look at the assembly of the Steam Controller that included a timelapse of the assembly line itself being assembled. If you missed that the first time, around, go watch it right now!

At least we know how to start with the foundations: everything we see on this PS4 assembly line is bolted to an aluminum extrusion big or small. These building blocks are useful whether we are building a personal project or a video console final assembly line, so we’ve looked into how they are made and how to combine them with 3D printing for ultimate versatility.

[via Adafruit]

IRobot Makes Learning Robot More Affordable

When you think of iRobot, you probably think of floor cleaning or military robots. But they also have a set of robots aimed at education. The Root robot — an acquisition the company made in 2019 — originally targeted classrooms and cost about $200 each. A new version costs about $130 and is a better fit for home users.

The original version  — Root rt1 — is still available, but the rt0 version has several missing features to hit the desired price. What’s missing? Apparently, the rt1 can stick to a whiteboard using magnets, but that feature is missing on the rt0. There are also no “cliff” sensors or color scanner.

Continue reading “IRobot Makes Learning Robot More Affordable”

Telepresence Robot Navigates Upgrades

As time marches on and a good percentage of us are still isolating from society at large, the progress of technology isn’t kept as stagnant. Earlier this year we featured a project about a much-needed small telepresence robot with an exceptionally low barrier for entry, and with the progress of time it has received several upgrades and some crowdfunding, all while preserving its original intent of a simple and easily-operated way of keeping in contact with others.

The new robot is still based on the cardboard design that holds a smartphone and drives it around using a microcontroller platform, but thanks to its small size and low power requirement this seems to suit it nicely. Improvements over the original design include a more robust one-size-fits-all phone mount and a more refined cardboard body. Also, since the small size is a little bit of a downside when navigating anywhere that isn’t a desk or counter, the new version makes it easier to make modifications such as adding a pedestal which can elevate the phone and improve the experience of the remote driver. A number of other optional modifications are possible as well, including a grabbing arm.

While telepresence robots unfortunately are needed now more than ever, we are happy to see people like [Ross] take on projects like this which will hopefully help improve our shared situation by allowing us to have a more involved level of contact with people we would otherwise prefer to see in person. If you’d like to build your own without waiting on the crowdfunding, be sure to check out the original project we featured back in April.