Exploding Multimeter Battle Royale

If you check out eBay, Amazon, or the other kinda-shady online retailers out there, you’ll quickly find you can buy a CAT III (600V) rated multimeter for under $50. If you think about it, this is incredible. There’s a lot of engineering that needs to go into a meter that is able to measure junction boxes, and factories in China are pushing these things out for an amazing price.

Over on the EEVBlog, these meters are being pushed to the limits. Last month, [joeqsmith] started a thread testing the theory that these cheap meters can handle extremely high voltages. A proper CAT III test requires a surge of electrons with a 6kV peak and a 2 ohm source. With a bunch of caps, bailing wire, JB Weld and zip ties, anyone can test if these meters are rated at what they say they are. Get a few people on the EEVBlog sending [joeqsmith] some cheapo meters, and you can have some real fun figuring out how these meters stack up.

The real experiments began with [joe smith]’s low energy surge generator, a beast of a machine that can be measured with an even beastlier high voltage scope probe. This is a machine that will send a voltage spike through anything to short out traces on poorly designed multimeters.

How did the cheapo meters fare? Not well, for the most part. There was, however, one exception: the Fluke 101. This is Fluke’s My First Multimeter, stuffed into a pocketable package. This meter is able to survive 12kV pulses when all but two of the other brands of meters would fail at 3kV.

What’s the secret to Fluke’s success? You only need to look at what the Fluke 101 can’t do. Fluke’s budget meter doesn’t measure current. If you ever look inside a meter, you’ll usually find two fuses, one for measuring Amps and the other for all the other functions on the scope. There’s quite a bit of engineering that goes into the current measurement of a meter, and when it goes wrong you have a bomb on your hands. Fluke engineers rather intelligently dropped current measurement from this budget meter, allowing them to save that much on their BOM.

There’s an impressive amount of data collected by [joeqsmith] and the other contributors in this thread, but don’t use this to decide on your next budget meter; This is more of an interesting discovery of how to make a product that meets specs: just cut out what can’t be done with the given budget.

Wind Tunnel Testing Now Available To The Common Man

DIY Wind Tunnel

If you are in the market for a DIY wind tunnel the folks over at sciencebuddies.org have got you covered. They have done a great job documenting how they built their own wind tunnel. Most of the structure is made of plywood with the test chamber is made of plexi-glass so that the operator can visually observe what is happening during a test. A common gable-mount fan provides the air flow, you may have one installed in your attic to keep it cool. The only non-widely available components are the force sensors that feed data to a computer for logging.

Continue reading “Wind Tunnel Testing Now Available To The Common Man”

Introducing: Hackaday Projects

Today Hackaday is launching a new site that furthers our goal of being a Virtual Hackerspace. Now you can host your own hacks and builds in a place truly worthy of what we’re all about. We present to you: Hackaday Projects.

What’s so great about it? It has a dark theme, just like the blog! Actually, the awesome of the new site is a combination of what’s already available and what we have planned. First and foremost, the site has been built from the ground up with open data in mind. This means you own what you create on Hackaday Projects. You can export your work, delete it, and use a public API to extend the usefulness of the data. Secondly, we have a range of different tools which are extremely easy and quick to use, but allow rich styling and presentation when you need it. Want to see what we mean? Go check out the NFC Voting Rig that was at The Gathering.

Where do we go from here? A huge part of that is up to you. We need Hackaday readers to get in there and tell us what works, what doesn’t work, and what needs to be added. Are you up to the task? Request your alpha testing invite now and guide Hackaday Projects to be the hosting site the Hackaday community has always dreamed about!

Stress Testing Robots…with Baseball Bats

robot_stress_test

When you are working on constructing the first Cyberdyne Systems Model 101 prototype a super-robust robotic arm, you’ve got to test it somehow, right?

You probably recognize the robot being abused in the video below, as we have talked about the construction of its hand once once before. The German Aerospace Center has been working on the DLR Hand Arm System for some time now, and are obviously really excited to show you how their design performs.

In case you are not familiar, the arm you see there uses 52 different motors, miniaturized control electronics, and a slew of synthetic tendons to behave like a human arm – only much better. The system’s joints not only provide for an incredible amount of articulation, they are specially designed to allow the unit to absorb and dissipate large amounts of energy without damaging the structure.

We think that any human would be hard pressed to retain their composure, let alone be able move their arm after suffering a blow from a baseball bat, yet the robot arm carries on just fine. It’s awesome technology indeed.

Continue reading “Stress Testing Robots…with Baseball Bats”

Cell Phone Endurance Tests


Gone are the days when a phone would last you a lifetime and enter the days of glass covered mobile phones built to be sexy and sophisticated. With these new phones come new testing methods. Companies like Nokia are still dedicated to making the best phones possible and making them durable through vigorous testing. The example shown in the article, is simulating a phone dropping from a shirt pocket onto the floor. Nokia claims to use 200 endurance tests encompassing temperature, extreme usage (use this button pusher for you own test), physical drops, and exposure to humidity on each new model in their product line. Makes one wonder what other companies are using for their endurance tests. There’s video of the Nokia N8 Drop Test is after the break, and don’t forget to leave a comment if you know about other interesting test methods.

Continue reading “Cell Phone Endurance Tests”

Nokia: Destroying Phones For Fun And Profit

nokia-test-center-ctia-still (Custom)

No matter how grumpy you are in the morning, this video should make you smile. This is one of the jobs many of us dream of. Take a tour around Nokia’s product testing facility with Engadget. Watch in the video as phones are squashed, pinched, smacked, baked, shaken, dialed, slid, opened, and closed repeatedly. Sure, we don’t get to see any of them obliterated, but it sure is fun to see those machines at work. Each one of these tests will be run until the phones eventually come apart or cease to function. Too bad they didn’t show us that part of it.