Hackaday Munich — Get Your Ticket Now!

If you’re anywhere remotely near Munich in November you’re not going to want to miss this. Hackaday is throwing our first European event! The fun runs from 12:30-23:30 on Thursday, November 13th, 2014.

Take the afternoon off of work

Tell your boss this is professional development, then grab all your hacking gear and head on down to Technikum at the Munich Kultfabrik.

Our set of workshops will test your embedded skills whether you’re a beginner or seasoned veteran. These include controlling small robots, working with audio processing from a Moog synth, reverse engineering some mystery hardware, and trying your hand at machine vision.

Try win the afternoon’s challenges. Implement the fastest and most reliable robot brain, design the best Moog synth add-on circuit. Or prove your logic skills by coding a perfect Computer Vision game solver. We’ll bring some prizes for those that show the most clever and impressive skill.

Take in the talks and learn the winner of The Hackaday Prize

Beginning at 19:00 we present a couple of talks about embedded hardware sure to impress the most discerning of hackers. Immediately following we will announce the Grand Prize winner of the 2014 Hackaday Prize. This Open Hardware build is the project that made it through more than 800 entries to secure a trip into space and eternal recognition from the Hackaday community.

Finish the day with a party

Finally, we’ll dim the lights and turn up the music for The Hackaday Prize Party. Enjoy some food and beverages, get yourself 3D scanned, try your hand at some vintage video games, and enjoy the company of the Hackaday Community. In attendance will be [Mike Szczys], [Brian Benchoff], [Aleksandar Bradic], [Jasmine Brackett], and [Ben Delarre].

We’ll see you there!

Announcing The Five Finalists For The Hackaday Prize

Six months ago we challenged you to realize the future of open, connected devices. Today we see the five finalists vying for The Hackaday Prize.

These five were chosen by our panel of Launch Judges from a pool of fifty semifinalists. All of them are tools which leverage Open Design in order to break down the barriers of entry for a wide range of interests. They will have a few more weeks to polish and refine their devices before [Chris Anderson] joins the judging panel to name the winner.

Starting on the top left and moving clockwise:

ChipWhisperer, an embedded hardware security research device goes deep into the world of hardware penetration testing. The versatile tool occupies an area in which all-in-one, wide-ranging test gear had been previously non-existant or was prohibitively expensive to small-shop hardware development which is so common today.

SatNOGS, a global network of satellite ground stations. The design demonstrates an affordable node which can be built and linked into a public network to leverage the benefits of satellites (even amateur ones) to a greater extent and for a wider portion of humanity.

PortableSDR, is a compact Software Defined Radio module that was originally designed for Ham Radio operators. The very nature of SDR makes this project a universal solution for long-range communications and data transfer especially where more ubiquitous forms of connectivity (Cell or WiFi) are not available.

ramanPi, a 3D printed Raman Spectrometer built around a RaspberryPi with some 3D printed and some off-the-shelf parts. The design even manages to account for variances in the type of optics used by anyone building their own version.

Open Source Science Tricorder, a realization of science fiction technology made possible by today’s electronics hardware advances. The handheld is a collection of sensor modules paired with a full-featured user interface all in one handheld package.

From Many, Five

The nature of a contest like the Hackaday Prize means narrowing down a set of entries to just a few, and finally to one. But this is a function of the contest and not of the initiative itself.

The Hackaday Prize stands for Open Design, a virtue that runs far and deep in the Hackaday community. The 50 semifinalists, and over 800 quarterfinalists shared their work openly and by doing so provide a learning platform, an idea engine, and are indeed the giants on whose shoulders the next evolution of hackers, designers, and engineers will stand.

Whether you submitted an entry or not, make your designs open source, interact with the growing community of hardware engineers and enthusiasts, and help spread the idea and benefits of Open Design.

THP Hacker Bio: Neil Jansen

If we were running a contest to give away a trip to space for building the most innovative open hardware project a few years ago, the winner would inevitably be a 3D printer. Times have changed, 3D printing is reaching the limits of what can be done with simple plastic extrusion, and there are new hardware challenges to be conquered. One of the challenges facing hardware designers is the ability to create and assemble electronic circuits quickly. For that, there are a few pick and place machines being developed, the lowest cost being the FirePick Delta. It sells itself as a $300 pick and place machine borrowing heavily from the RepRap project, enabling tinkerers and engineers to assemble PCBs quickly.

[Neil Jansen] is the project lead for the FirePick Delta, and along with team members ranging from software developers in the bay area, to electronics technicians and high school students, they’ve created what will become the lowest cost and most capable pick and place machine available. Already the machine has tape feeders, tray feeders, a vision system, and modules to dispense solder paste. It’s an astonishing accomplishment, and were it not for some damage in shipping, we would have a video of [Neil] demoing the FirePick at Maker Faire NY.

In lieu of that, we do have a bio on [Neil] and what challenges he’s faced in building the FirePick. You can read that below, or check out their second demo video for The Hackaday Prize:

https://www.youtube.com/watch?v=46pLeLBYVTs

Continue reading “THP Hacker Bio: Neil Jansen”

THP Semifinalist: OSHWatch

No, it’s not a finely crafted wrist accessory from Cupertino, but [Jared]’s OSHWatch, but you’re actually able to build this watch thanks to an open design and reasonable, hand-solderable layout.

Built around a case found on DealExtreme that looks suspiciously similar to enclosures meant to hold an iPod Nano, [Jared]’s smartwatch includes a 128×128 RGB OLED display, magnetometer, accelerometer, Bluetooth 4.0 transceiver, and a lithium-ion charger and regulator circuit. Everything is controlled with a PIC24, which should mean this watch has enough processing power to handle anything a watch should handle.

As for the UI and what this watch actually does [Jared] is repurposing a few Android graphics for this watch. Right now, the watch can display the time (natch), upcoming appointments on his schedule, accelerometer and magnetometer data, and debug data from the CPU. It’s very, very well put together, and repurposing an existing watch enclosure is a really slick idea. Videos below.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Continue reading “THP Semifinalist: OSHWatch”

THP Semifinalist: Solar Energy System

Building a solar power installation isn’t as simple as buying a few panels, wiring them up to a battery, and putting an inverter in the mix. To get the most out of your pricey panels, you’ll want to look at something called Maximum Power Point tracking. Solar panels have an IV curve, and this changes with how much sunlight they’re getting. To get the most out of a set of cells, you need make sure you’re drawing the maximum amount of power out of your cells.

[Nathaniel]’s Solar Energy Generator does just that. It can handle up to 500 Watts, sucks power down from a bank of solar cells and spits that out to a battery. That’s not everything; the project also has a microcontroller for measuring and displaying all the pertinent info, and some terminals to plug in a few DC loads.

While the Solar Energy Generator is designed for off the grid applications, this could easily augment a home installation on the cheap. If you want more than 500 Watts or so, you’ll want to look at a larger controller, but for anything under that, [Nathan] has you covered.

Videos below.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Continue reading “THP Semifinalist: Solar Energy System”

THP Semifinalist: A Robotic Lawn Mower

For all the Roombas in the world, you have to wonder why robotic lawn mowers aren’t more common. Sure, you can go out and buy one, but mowing the typical suburban yard is a piece of cake for a robot; there aren’t stairs, there are relatively few obstacles, and a boundary wire system is much simpler than simply bouncing into things like an iRobot.

[Schuhumi]’s autoCut is the only household robot to make the semifinalists in The Hackaday Prize. Underneath, this bot is electric, has fully automatic operation, and even has a motor to change the height of the blades. The blades are actually designed more like a stringless weedwacker; the blades pivot back when they encounter a hard obstacle, although this safety cage is a really good idea

Instead of doing the random ‘bump and turn’ algorithm found in a roomba, there’s a lot of thought put into navigation with this bot. [schuhumi] is using ultrasonic navigation that triangulates the position of the bot in a yard. That’s a great idea; there’s no need to waste time or power rolling over what the bot has already cut.

You can check out [schuhumi]’s overview video and a demo below.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize. 

Continue reading “THP Semifinalist: A Robotic Lawn Mower”

THP Semifinalist: NSA Away

Back when we started The Hackaday Prize, security, big brother, and the NSA were making headlines every day. Since that time, there has been enough bread and circuses in the news to wipe the consequences of these leaks out of the public consciousness, but work is still being done by hackers and tinkerers the world over to give you the tools to protect your data.

NSA Away is one of these tools. The first part of the project is a standalone key generator that writes the same random bits to a pair of SD cards simultaneously. With their random number generator, this is perfect encryption. The only way to crack the one time pad the team is using for encryption is to 1) use parts of the pad more than once, 2) have a terrible RNG, or 3) do something really stupid like sell the one time pad in a store.

The other part of the build is an Android-based encryption device with a camera, keyboard, SD card reader, and a USB port. This device reads the ‘OTP SD cards’ and reads data with the camera using OCR and decrypts it on the screen. Provided the OTP doesn’t fall into the wrong hands, this is a perfectly secure way to transmit data to anyone.

As far as progress goes, the members of the team have a fully functional pad generator, writing random data to SD cards. This device can also output random bits to a computer as a USB HID device, should you want to transmit your pad over unsecured mediums.

It’s an impressive bit of work, especially in the RNG department. The team is using eight avalanche noise generators in the circuit description. This part of the build isn’t quite working yet, but that’s really not needed for a proof of concept.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.