Comparing 3D Printed Tires: Resin Vs. TPU

Many robot builders and RC enthusiasts find themselves turning to 3D printed tires. The benefit is you can make them in any size and style you want, and they’re as readily available for as long as your home printer is still working. [Michael Rechtin] printed some up and decided to see how long they’d actually last in use.

[Michael] printed a pair of tires for the test. One was made in TPU on a typical FDM printer, while the other was printed in flexible resin. The tires were then installed on hubs and fitted with gear motors for drive. The assembly was then fitted to the end of a test tether that would turn in circles for hours to put mileage on the tires.

After many hours and around 10 miles of testing, both tires were showing signs of wear. Notably, the resin tires showed a lot more wear than the TPU version, suggesting the latter material is a better choice for printing hard-wearing tires.

Overall, it’s reminiscent of the tether testing we saw from [rctestflight] recently. There’s something compelling about thrashing something round in circles to learn something in the process! Video after the break.

Continue reading “Comparing 3D Printed Tires: Resin Vs. TPU”

Do Flat Tyres Make Your Speedo Lie?

There are some engineering questions that may not have huge importance in the world, but which become the subject of intense idle speculation. A good example is the question of whether a lower tyre pressure on a motor vehicle would make a difference to the indicated speed. There are several contrasting intuitive theories as to what should happen, so [mechatronicsguy] has taken the time for a bit of experimentation in order to find out what really happens.

At stake were the change in effective radius from a flattened portion of the tyre, the so-called tank tracks effect in which the entire circumference of the tyre is still traversed, and the prospect of a change in circumference due to the different pressure. The test wheels were made from foam, and were found to give a different reading when compressed. This might solve toe problem, but of course real car wheels have radial wires to give them stiffness. When these were simulated on the foam wheels with packing tape, the difference evaporated. Later this was confirmed by GPS-measuring a real car with deflated wheels.

All this makes for a fascinating read, because after all, there’s sometimes no substitute for a real-world test.

Header image: Gerlach, Public domain.

Airless Tire For Your Car: Michelin Says 2024, Here’s What They’re Up Against

The average motorist has a lot to keep track of these days. Whether its how much fuel is left in the tank, how much charge is left in the battery, or whether or not the cop behind noticed them checking Twitter, there’s a lot on a driver’s mind. One thing they’re not thinking about is tires, theirs or anyone else’s for that matter. It a testament to the state of tire technology, they just work and for quite a long time before replacements are needed.

There hasn’t been a major shift in the underlying technology for about fifty years. But the times, they are a changing — and new tire technology is claimed to be just around the corner. Several companies are questioning whether the pneumatic tire is the be-all and end all, and futuristic looking prototypes have been spotted at trade shows the world over. Continue reading “Airless Tire For Your Car: Michelin Says 2024, Here’s What They’re Up Against”

3D Printed Tyres Let You Drive On Water

[Jesus] apparently walked on water, without any tools at all. But when you’ve got a 3D printer handy, it makes sense to use it. [Simon] decided to use his to 3D print some tyres for his R/C car – with awesome results.

[Simon] started this project with a goal of driving on water. Initial experiments were promising – the first design of paddle tyres gave great traction in the sand and were capable of climbing some impressive slopes. However, once aimed at the water, the car quickly sank below the surface.

Returning to the drawing board armed with the advice of commenters, [Simon] made some changes. The paddle tyres were reprinted with larger paddles, and a more powerful R/C car selected as the test bed. On the second attempt, the car deftly skipped along the surface and was remarkably controllable as well! [Simon] has provided the files so you can make your own at home.

It’s a great example of a practical use for a 3D printer. Parts can readily be made for all manner of RC purposes, such as making your own servo adapters.