Custom 3D printed designs with Makerbot’s Customizer

custom

Although having a 3D printer means you can create custom object of your own design, that doesn’t change the fact that most object printed on Makerbots and RepRaps are copies, or slight derivations, of already existing object. If you need a gear, just go grab an OpenSCAD file for a gear, and a custom smart phone case can be easily made by modifying an already existing one. The problem with this approach, though, is you’ll need to learn OpenSCAD or another 3D design tool. Enter the Makerbot Customizer, a web app that allows you to create custom versions of other people’s work right in your browser.

The idea behind Customizer is simple: someone creates an OpenSCAD file with a few variables like the number of teeth on a gear or the number of turns on a screw. Customizer takes this OpenSCAD file, puts sliders and radio buttons on a web page, and allows you to create custom objects based on user-created templates.

Already we’ve seen a lot of Hackaday readers send in some pretty cool customizable things, like [Bryan]‘s coil form for DIY inductors and [Greg]‘s customizable PVC pipe couplers. If you already know OpenSCAD, it’s easy to create your own objects that are customizable by anyone on the Internet.

Programming in 3D with 3DPL

cubes

Here’s an interesting tool for making simple 3D games. It’s called 3DPL, the 3D programming language, and it’s a real-time interpreted language that allows you to create cubes and other primitives that respond to user input and internal logic. Not only that, but you can build 3D versions of breakout and asteroids very simply with only a few lines of code.

3DPL is based on Unity with a lot of JavaScript influences. Building a cube in 3DPL is as simple as declaring it with a name and position in 3D space. There are a few functions that can be applied to these cubes – they can be made to rotate at the press of a key, or translated in space to collide with each other.

It’s still a very early build, but looks to be pretty interesting for an ‘introduction to 3D graphics programming’ perspective. You can grab a copy of 3DPL to try out over on [amigojapan]‘s github. Hopefully we’ll see a gravity method soon for a proper 3DPL Tetris implementation.

Genetic algorithms become programmers themselves

AI

[Kory] has been experimenting with genetic algorithms. Normally we’d expect his experiments to deal with tuning the variables in a control system or something, but he’s doing something much cooler. [Kory] is using genetic algorithms to write computer programs, and in the process bringing us one step closer to the Singularity.

The first experiments with genetic algorithms generating applications did so in BASIC, C, and other human-readable languages. While these programs nearly worked, there were far too many limitations on what could be produced with a GA. A simpler language was needed, and after turning to assembly for a hot second, [Kory] ended up using brainfuck, an extremely minimal but still Turing-complete language.

The use of brainfuck for creating programs from a genetic algorithm may seem a bit strange, but there’s a method to [Kory]‘s madness. It’s relatively simple to write an interpreter the GA’s fitness function can look into and come up with a score of which programs should breed and which should die. Also, the simplicity of brainfuck means a computer doesn’t have to learn much syntax and grammar at all.

Right now, [Kory]‘s computer that can program itself only does so by creating simple ‘hello world’ programs. It should be possible, though, for this AI to create programs that take user input and generate an output, whatever that may be. Once [Kory] is able to have the computer generate its own fitness functions, though, the sky is the limit and the Singularity will be fast approaching.

Web scraping Amazon and Rotten Tomatoes

web-scraping-amazon-and-rotten-tomatos

[Rajesh] put web scraping to good use in order to gather the information important to him. He’s published two posts about it. One scrapes Amazon daily to see if the books he wants to read have reached a certain price threshold. The other scrapes Rotten Tomatoes in order to display the audience score next to the critics score for the top renting movies.

Web scraping uses scripts to gather information programmatically from HTML rather than using an API to access data. We recently featured a conceptual tutorial on the topic, and even came across a hack that scraped all of our own posts. [Rajesh's] technique is pretty much the same.

He’s using Python scripts with the Beautiful Soup module to parse the DOM tree for the information he’s after. In the case of the Amazon script he sets a target price for a specific book he’s after and will get an email automatically when it gets there. With Rotten Tomatoes he sometimes likes to see the audience score when considering a movie, but you can’t get it on the list at the website; you have to click through to each movie. His script keeps a database so that it doesn’t continually scrape the same information. The collected numbers are displayed alongside the critics scores as seen above.

Raspberry Pi plays MIDI without an operating system

For all the interesting DSP functions locked away in the Raspberry Pi, it’s still hard to imagine using the Raspberry Pi as an eminently capable software synthesizer, tracker, or sequencer. Running any of the usual Linux digital audio programs means – surprise – running Linux, and the performance penalty associated with that.

It would be much better if all these audio programs could run directly on the Raspberry Pi without an operating system, and [Joe]‘s project is right up that alley. He’s playing MIDI files without an operating system, in effect making the Raspberry Pi a very powerful embedded platform.

[Joe]‘s build is the first bare metal audio code for the Raspberry Pi. It’s actually an LV2 plugin host that will load audio plugins, read MIDI files, and shoot the resulting audio out over the 1/8″ jack on the Pi.  This work wouldn’t have been possible without a few Raspberry Pi bare metal tutorials put together by [David Welch].

Hopefully this won’t be the last we’ll see of [Joe] and his code; the Raspberry Pi has more than enough horsepower to be an amazing sampler, synth, beat machine, or the next generation of Akai MPC. All we need are a few brave coders to take up coding bare metal on the Raspberry Pi.

Raspberry Pi and R

R

[Stephen] picked up a Raspberry Pi to do a little hardware hacking and add a blinking LED to the many feathers in his software development hat. He picked up an analog to digital converter and a temperature sensor that would serve him well in a few projects he wanted to put together, including a weather station and a small Pi-controlled home brewing setup. He ended up not liking Python, and didn’t like the C-ness of wiringPi. He’s a scientist, so he’s most comfortable with R and Matlab. Of course, playing around with a R and a Raspberry Pi means replicating his sensor-reading code in R.

[Stephen] put together a neat little package that will allow him to read his sensors over an SPI bus with his Raspberry Pi. Yes, this functionality can easily be duplicated with Python, but if you’re looking to generate beautiful graphs, or just do a whole lot of statistics on something, R is the tool you need.

It’s a cool project, even if it is only measuring the temperature. Using R for the nerd cred isn’t bad, either.

A better template for your STM32 F3 dev board

If you’ve picked up one of those really cool STM32 ARM dev boards, you’ve probably poked around looking for a good toolchain. No fear, then, because [Matt] has your back. He put together a template for the ARM Cortex-M4 powered STM32 board.

[Matt] had been using a template for the STM32 F4 we’d covered before, but found the implementation a bit lacking. Wanting to exploit the functionality of his fancy STM32 F3 board, [Matt] took the F0 template whipped up by our very own [Mike S] and got it to work with the newer, fancier dev board.

There are a few bonuses to using [Matt]‘s template; the ARM chip in the F3 Discovery board has a hardware floating-point unit that is inaccessible using the Code Sourcery G++: Lite Edition toolchain. [Matt]‘s use of gcc-arm-embedded allows access to the hardware FPU, a great benefit for a great board.

Follow

Get every new post delivered to your Inbox.

Join 96,388 other followers