DARPA Plans To Begin Hacking Human Brains

So [DARPA] wants to start hacking human brains, With the help of the biomedical device center at the university of Texas in Dallas. This does sound a bit crazy but DARPA does crazy. Conspiracy theorists are going to have a field day with this one.

The initial plans to turn us all into mindless zombies seem to be shelved for now, however they are working on what they call Targeted Neuroplasticity Training (TNT), which they explain means using the body’s nervous system to enhance and speed up the learning process. This could be achieved by using a process known as ‘synaptic plasticity‘ which opens and closes the brains synapses with electrical stimulation. They hope that by tuning the neural networks responsible for cognitive function it will enhance learning. Let’s just hope they don’t turn any humans into DARPA falling robots.

Ctrl-X, Ctrl-V for DNA

Once upon a time, the aspiring nerdling’s gift of choice was the Gilbert chemistry set. Its tiny vials of reagents, rack of test tubes, and instruction book promised endless intellectual stimulation and the possibility of stink bombs on demand. Now a new genetic engineering lab-in-a-box Kickstarter, with all the tools and materials needed to create your own transgenic organisms, may help the young biohacker’s dreams come true.

The Kickstarter has been wildly successful. The initial goal was $1200AUD was met in a day, and currently stands at almost $6200AUD. Despite that success, color me skeptical on this one. Having done way more than my fair share of gene splicing, there seem to be a few critical gaps in this kit. For example, the list of materials for the full kit includes BL21 competent E. coli as the host strain. Those cells are designed to become porous to extracellular DNA when treated with calcium chloride and provided with a heat shock of 42°C. At a minimum I’d think they’d include a thermometer so you can control the heat shock process. Plenty of other steps also need fairly precise incubations, like the digestion and ligation steps needed to get your gene into the host. And exactly what technique you’d be using to harvest DNA from the animal, plant or fungal cells is unclear; the fact that most of the techniques for doing so require special techniques leads me to believe there’s a lot less here than meets the eye.

To be fair, I’ve been off the lab bench for the better part of two decades, and the state of the art has no doubt advanced in that time. There could very well be techniques I’m not familiar with that make the various steps needed to transform a bacterial culture with foreign DNA trivial. It could also be the case that the techniques I used in the lab were optimized for yield and for precise data, while the GlowGene kit provides the materials to get a “good enough” result. I hope so, because a kit like this could really expand the horizons of hackerdom and start getting the biohacking movement going.

[Thanks, Michael!]

The Biohacking Movement and Open Source Insulin

In March of 2014, I knew my eight year old daughter was sick. Once borderline overweight, she was now skeletally thin and fading away from us. A pre-dawn ambulance ride to the hospital gave us the devastating news – our daughter had Type 1 diabetes, and would be dependent on insulin injections for the rest of her life.

This news hit me particularly hard. I’ve always been a preparedness-minded kind of guy, and I’ve worked to free myself and my family from as many of the systems of support as possible. As I sat in the dark of the Pediatric ICU watching my daughter slowly come back to us, I contemplated how tied to the medical system I had just become. She was going to need a constant supply of expensive insulin, doled out by a medical insurance system that doesn’t understand that a 90-day supply of life-saving medicine is a joke to a guy who stocks a year supply of toilet paper. Plus I had recently read an apocalyptic novel where a father watches his 12-year old diabetic daughter slip into a coma as the last of her now-unobtainable insulin went bad in an off-grid world. I swore to myself that I’d never let this happen, and set about trying to find ways to make my own insulin, just in case.

Continue reading “The Biohacking Movement and Open Source Insulin”

Gift Your Next Robot With the Brain of a Roundworm

A group of developers called [OpenWorm] have mapped the 302 neurons of the Caenorhabditis elegans species of roundworm and created a virtual neural network that can be used to solve all the types of problems a worm might encounter. Which, when you think about it, aren’t much different from those a floor-crawling robots would be confronted with.


In a demo video released by one of the projects founders, [Timothy Busbice], their network is used to control a small Lego-rover equipped with a forward sonar sensor. The robot is able to stop before it hits a wall and determine an appropriate response, which may be to stop, back up, or turn. This is all pretty fantastic when you compare these 302 neural connections to any code you’ve ever written to accomplish the same task! It might be a much more complex route to the same outcome, but its uniquely organic… which makes watching the little Lego-bot fascinating; its stumbling around even looks more like thinking than executing.

I feel obligated to bring up the implications of this project. Since we’re all thinking about it now, let’s all imagine the human brain similarly mapped and able to simulate complex thought processes. If we can pull this off one day, not only will we learn a lot more about how our squishy grey hard drives process information, artificial intelligence will also improve by leaps and bounds. An effort to do this is already in effect, called the connectome project, however since there are a few more connections to map than with the c. elegans’ brain, it’s a feat that is still underway.

The project is called “open”worm, which of course means you can download the code from their website and potentially dabble in neuro-robotics yourself. If you do, we want to hear about your wormy brain bot.

Continue reading “Gift Your Next Robot With the Brain of a Roundworm”