Poetic SSIDs

Artists see the same world that the rest of us do. They just see it from a little bit off to the left. Where you see picking an ESSID for your router as being a hassle, or an opportunity to insult your neighbors, [Dmitry], alias [::vtol::] sees a poetry-delivery mechanism.

Based on ESP8266 units, each “poet” has a battery and a switch. Turn it on and it changes its SSID once every ten seconds, feeding everyone who’s listening the next line of a poem. You can’t connect to the network, but you can occasionally hit refresh on your WiFi scanner and read along.

Since they’re so cheap to build, [::vtol::] sees them almost as if they were poetry-throwies. You could easily afford to leave a few around the city, guerilla-style, broadcasting your (slow) message one SSID at a time. We love the video clips (inlined below) of him riding the subway with the device on.

Continue reading “Poetic SSIDs”

Artificial Muscles To Bring Relief To Robotic Tenseness

Custom, robotic prosthesis are on the rise. In numerous projects, hackers and makers have taken on the challenge. From Enabling The Future, Open Hand Project, OpenBionics to the myriad prosthesis projects on Hackaday.io. Yet, the mechatronics that power most of them are still from the last century. At the end of the day, you can only fit so many miniature motors and gears into a plastic hand, and only so many hydraulics fit onto an arm or leg before it becomes a slow, heavy brick – more hindering than helpful. If only we had a few extra of these light, fast and powerful actuators that help us make it through the day. If only we had artificial muscles.

Continue reading “Artificial Muscles To Bring Relief To Robotic Tenseness”

Hacking The Tesla Model S Rear Drive Unit

[Jason Hughes] is a big fan of Tesla, he’s spent a lot of time hacking on them to figure out what fancy things the automaker is up to. His most recent adventures are with the rear drive unit of a Tesla Model S.

[Jason] has had some fame in the Tesla community before; his most publicized hack was finding the model number for Tesla’s next edition of their car hashed away in the firmware. For this project he procured a rear drive unit from… somewhere, and with some help got it onto his bench at home.

His first steps were to hook it up to some power and start sniffing the CAN bus for commands. It took him a few hours but he was able to get the motor turning. He kept working at it until he had the full set of commands. So, he hooked up circulating water to the unit for cooling, and put it through its paces (at one point the unit announced it was now traveling at 117mph).

In the end he was able to get all the features working, including generation! He even made his own board for contrl. Just listening to the motor spin up is satisfying. Videos after the break.

Continue reading “Hacking The Tesla Model S Rear Drive Unit”

The World’s Supply Of DB-19 Connectors

[Steve] over at Big Mess O’ Wires has a very, very niche product. It’s the Floppy Emu, a hard disk emulator for the Apple II, Lisa, and very old Macs. The Floppy Emu takes data stored on an SD card and presents it to these classic computers through a contemporary connector, the venerable DB-19. This connector is in the same family as the familiar DB-25 parallel port, DE-9 serial port and the old DA-15 joystick port, but there’s something very special about the DB-19 connector – nobody makes it anymore, and no surplus electronics store has any in stock. They’re unobtanium, and when you’re making a product built around this connector, you’re going to have a few problems.

Those problems have come to a head over the past year, but getting a few thousand DB-19 connectors manufactured has always seemed just out of reach. It would be a five-figure investment for a very niche product, and [Steve] would have to find someone to make the connectors.

The world’s shortage of DB-19 connectors is no more. After chatting up a few people in the NeXT and Atari communities, [Steve] set up a group buy and manufactured the first batch of DB-19 connectors in recent memory. The world’s supply of DB-19 connectors, all 10,000 of them, is now in [Steve]’s living room.

The process of manufacturing ten thousand DB-19 connectors actually wasn’t that hard for [Steve]. Over the past year, he’s reached out to manufacturers to get a quote, and he still had those numbers in his rolodex. The only problem was finding an engineering drawing of a DB-19 connector and transferring a large amount of money to Hong Kong. The drawing was easy enough, as datasheets sometimes last longer than the parts they describe. Transferring the money over to the manufacturer meant convincing a bank manager there is not a Nigerian prince in Hong Kong and thirty minutes of paperwork.

After a few months, a round of prototyping, and a trip through customs, the world’s supply of DB-19 connectors finally landed on [Steve]’s porch. He still needs to ship them out to the NeXT and Atari folk who participated in the group buy, but the great shortage of DB-19 connectors is over for now.