Revisiting Folk Wisdom For Modern Chronic Wound Care

In the constant pursuit of innovation, it’s easy to overlook the wisdom of the past. The scientific method and modern research techniques have brought us much innovation, which can often lead us to dismiss traditional cultural beliefs.

However, sometimes, there are still valuable kernels of truth in the folklore of yesteryear. This holds true in a medical study from Finland, which focused on the traditional use of spruce resin to treat chronic wounds, breathing new life into an age-old therapy.

Continue reading “Revisiting Folk Wisdom For Modern Chronic Wound Care”

Drone Flies For Five Hours With Hydrogen Fuel Cell

Multirotor drones have become a regular part of daily life, serving as everything from camera platforms to inspection tools and weapons of war. The vast majority run on lithium rechargeable batteries, with corresponding limits on flight time. A company called Hylium hopes to change all that with a hydrogen-powered drone that can fly for up to five hours.

The drone uses a hydrogen fuel cell to provide electricity to run the drone’s motors and other electronic systems. Thanks to the energy density advantage of hydrogen versus lithium batteries, the flight time can be greatly extended compared to conventional battery-only drones. Details are scant, but the company has gone to some lengths to build out the product beyond a simple tech demonstrator, too. Hylium touts useful features like the short five-minute refueling time. The drone also reportedly features a night vision camera and the capability to transmit video over distances up to 10 kilometers, though some of the video of these features appears to be stock footage.

Hylium claims the liquid hydrogen canister used for the drone is drop-safe in the event of a problem. Notably, the video suggests the company tested this by dropping the canister concerningly close to an active motorway, but from what we see, nothing went awry.

A drone that can fly for five hours would be particularly useful for autonomous surveillance and inspection roles. The additional loiter time would be advantageous in these roles. We’ve seen other aero experimenters exploring the use of hydrogen fuel cells, too.

Continue reading “Drone Flies For Five Hours With Hydrogen Fuel Cell”

A Vintage Polaroid Camera Goes Manual

There once was a time when all but the most basic of fixed focus and aperture cameras gave the photographer full control over both shutter speed and f-stop. This allowed plenty of opportunity to tinker but was confusing and fiddly for non-experts, so by the 1960s and ’70s many cameras gained automatic control of those functions using the then quite newly-developed solid state electronics. Here in 2023 though, the experts are back and want control. [Jim Skelton] has a vintage Polaroid pack film camera he’s using with photographic paper as the film, and wanted a manual exposure control.

Where a modern camera would have a sensor in the main lens light path and a microcontroller to optimize the shot, back then they had to make do with a CdS cell sensing ambient light, and a simple analog circuit. He considered adding a microcontroller to do the job, but realized that it would be much simpler to replace the CdS cell with a potentiometer or a resistor array. A 12-position switch with some carefully chosen resistor values was added, and placed in the camera’s original battery compartment. The final mod brought out the resistors and switch to a plug-in dongle allowing easy switching between auto and switched modes. Result – a variable shutter speed Polaroid pack camera!

Sadly the film for the older Polaroid cameras remains out of production, though the Impossible Project in the Netherlands — now the heirs to the Polaroid name — brought back some later versions and have been manufacturing them since 2010. Hackers haven’t been deterred though and have produced conversions using Fuji Instax film and camera components, as with this Polaroid portrait camera, and [Jim]’s own two-camera-hybrid conversion.