Micro-Organisms Give Up the Volts in this Biological Battery

Battery cells work by chemical reactions, and the fascinating Hybrid Microbial Fuel Cell design by [Josh Starnes] is no different. True, batteries don’t normally contain life, but the process coughs up useful electrons all the same; 1.7 V per cell in [Josh]’s design, to be precise. His proof of concept consists of eight cells in parallel, enough to give his cell phone a charge via a DC-DC boost converter. He says it’s not known how long this can be expected to last before the voltage drops to an unusable level, but it works!

Eight-cell, 3D printed proof of concept.

There are two complementary sides to each cell in [Josh]’s design. On the cathode side are phytoplankton; green micro algae that absorb carbon dioxide and sunlight. On the anode side are bacteria that break organic material (like food waste) into nitrates, and expel carbon dioxide. Version 2 of the design will incorporate a semi-permeable membrane between the cells that would allow oxygen and carbon dioxide to be exchanged while keeping the populations of micro-organisms separate; this would make the biological processes more complementary.

A battery consisting of 24 cells and a plumbing system to cycle and care for the algae and bacteria is the ultimate goal, and we hope [Josh] can get closer to that now that his project won a $1000 cash prize as one of the twenty finalists in the Power Harvesting Challenge portion of the Hackaday Prize. (Next up is the Human Computer Interface Challenge, just so you know.)

EV History: The Lightning Precedes The Thunder

In 1988, a bunch of engineers from Hotzenwald, Germany, came together and decided that it is time for the future of mobility: A new, more modern and environmentally friendly car should put an end to fossils and emissions while still being fun to drive. “It should become a new kind of car. Smaller, lighter, cleaner – and more beautiful” is how future CEO Thomas Albiez described his mission. For the first time in automotive history, this series car would be designed as an all-electric vehicle from the start and set a new standard for mobility. The project was given the codename “Hotzenblitz” (“Hotzen Bolt”) to indicate how the idea came to them: Like a lightning bolt. The snarky regional term also came with a double meaning: Imaginary lightning bolts, used for insurance fraud.

Hotzenblitz frame construction (origin unknown, image source)

Unnoticed by the rest of the world, they founded Hotzenblitz Mobile. Industrial Designer Harold Schurz was contracted to design the chassis for the Hotzenblitz, which was then modeled into a prototype chassis. The self-funded team moved fast. An external motorsports company helped to develop the tubular steel frame, and soon their vision took on shape. After the team had fitted a motor and transmission into the frame, CEO Thomas Albiez himself installed the traction battery and drive train. The team felt confident with the result, and in July 1990, during an open house day in the office, they somewhat spontaneously decided to call Green Tech entrepreneur and chocolate mogul Alfred Ritter.

Alfred Ritter had experienced financial losses after the Chernobyl Disaster. Many agricultural regions, including several hazelnut plantations that were vital to Alfred’s chocolate business, were irreversibly lost to the fallout contamination. It was then when he turned to the green energy business, founding the Paradigma group to manufacture solar collector systems and pellet heaters. When Thomas and the team called, Alfred jumped on the idea of an electric car. In the same year, Alfred Ritter and his sister Marli Hoppe-Ritter became shareholders in the company and helped to finance the future of the Hotzenblitz.

Continue reading “EV History: The Lightning Precedes The Thunder”

Waste Not, No Lights

Alchemists tried in vain to transmute lead into gold. What if you could turn waste products into energy? That’s what [chemicum] did in a recent video–he and some friends built microbial fuel cells that convert excrement into electricity (you can see the video, below).

The video doesn’t give you all the details of the build, but it seems easy enough. You need some stainless steel mesh, some activated charcoal, some epoxy, plastic containers, and some assorted metal plates and hardware. Of course, you also need excrement and–if the video is any indication–some clothespins to clamp your nose shut as you work.

Continue reading “Waste Not, No Lights”

They Put the “P” in Power

Fuel cells are like batteries, sort of. Both use chemical reactions to produce electricity. The difference is that when a battery exhausts its reactants, it goes dead. In some cases, you can recharge it, but you typically get less energy back with each recharge. A fuel cell, on the other hand, will make electricity as long as you keep supplying fuel. What kind of fuel? Depends on the cell, but most often it is hydrogen or methanol.

Researchers at the University of Bath, Queen Mary University of London, and the Bristol Robotics Laboratory want to use a different fuel: urine. According to the researchers, that’s one resource we will never deplete. The fuel cell is a type of microbial fuel cell which is nothing new. The breakthrough is that the new cell is relatively inexpensive, using carbon cloth and titanium wire. Titanium isn’t usually something you think of as cheap, until you realize that conventional cells usually use platinum.

Continue reading “They Put the “P” in Power”

Hackaday Prize Semifinalist: A Low Cost, DIY Fuel Cell

Electronic cars and planes are the wave of the future, or so we’re told, but if you do the math on power densities, the future looks bleak. Outside of nuclear power, you can’t beat the power density of liquid hydrocarbons, and batteries are terrible stores of energy. How then do we tap the potential of high density fuels while still being environmentally friendly? With [Lloyd]’s project for The Hackaday Prize, a low cost hydrogen fuel cell.

Traditionally, fuel cells have required expensive platinum electrodes to turn hydrogen and oxygen into steam and electricity. Recent advances in nanotechnology mean these electrodes may be able to be produced at a very low cost.

For his experiments, [Lloyd] is using sulfonated para-aramids – Kevlar cloth, really – for the proton carrier of the fuel cell. The active layer is made from asphaltenes, a waste product from tar sand extraction. Unlike platinum, the materials that go into this fuel cell are relatively inexpensive.

[Lloyd]’s fuel cell can fit in the palm of his hand, and is predicted to output 20A at 18V. That’s doesn’t include the tanks for supplying hydrogen or any of the other system ephemera, but it is an incredible amount of energy in a small package.

You can check out [Lloyd]’s video for the Hackaday Prize below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: A Low Cost, DIY Fuel Cell”

Ask Hackaday: Long Endurance Quadcopter

Quadcopters are useful little flying machines. They can be used in all sorts of applications, from mapping, to inspecting long pipelines, to border surveillance, or simply for fun. They all have one thing in common, however – a relatively short battery life. Because quadcopters use brute force to churn through the air, they require a lot of energy. More energy for longer flights means more batteries. More batteries means more weight to carry, which requires even more energy. If you want longer flight times, something has to change. Or does it?

A small start-up company called Horizon Unmanned Systems based out of Singapore claims their quadcopter can fly for up to four hours on a single charge, or up to two and a half hours carrying a 2.2 pound load. They claim to be able to pull this off with a novel approach. First, they fill the hollow frame of the quadcopter with hydrogen gas. They use that gas to power a cute little miniaturized fuel cell LiPo battery hybrid gizmo. And that’s about it. The rest is just standard quadcopter stuff.

The secret to all of this is the miniaturized fuel cell, and how it works. Unfortunately, this is as close as we’re going to get (pdf) for a datasheet. Fuel cells are nifty devices that take hydrogen and oxygen and convert them into water, along with electricity. While that sounds simple, making one is not. And making a miniature one light enough for a quadcopter is down right hard.

How would you increase the flight time of quadcopters? Fuel cells are a great idea, but is this technology within the reach of the modern hacker? We’ve seen people make them from scraps out of a junkyard, but how would you miniaturize it and make it light enough to be used as a practical power supply for a quadcopter?

Thanks to [Joseph Rautenbach] for the tip!

Retrotechtacular: The Future’s So Bright, We’re Gonna Need Photochromic Windowpanes

This is a day in the life of the Shaw family in the summer of 1999 as the Philco-Ford Corporation imagined it from the space-age optimism of 1967. It begins with Karen Shaw and her son, James. They’re at the beach, building a sand castle model of their modular, hexagonal house and discussing life. Ominous music plays as they return in flowing caftans to their car, a Ford Seatte-ite XXI with its doors carelessly left open. You might recognize Karen as Marj Dusay, who would later beam aboard the USS Enterprise and remove Spock’s brain.

The father, Mike Shaw, is an astrophysicist working to colonize Mars and to breed giant, hardy peaches in his spare time. He’s played by iconic American game show host Wink Martindale. Oddly enough, Wink’s first gig was hosting a Memphis-based children’s show called Mars Patrol. He went on to fame with classics such as Tic Tac Dough, Card Sharks, Password Plus, and Trivial Pursuit.

Mike calls up some pictures of the parent trees he’s using on a screen that’s connected to the family computer. While many of today’s families have such a device, this beast is almost sentient. We learn throughout the film that it micromanages the family within an inch of their lives by keeping tabs on their physiology, activities, financial matters, and in James’ case, education.

Continue reading “Retrotechtacular: The Future’s So Bright, We’re Gonna Need Photochromic Windowpanes”