Giving Solar Power’s Mortal Enemies A Dusting Without Wasting Water

A prerequisite for photovoltaic (PV) and concentrated solar power (CSP) technologies to work efficiently is as direct an exposure to the electromagnetic radiation from the sun as possible. Since dust and similar particulates are excellent at blocking the parts of the EM spectrum that determine their efficiency, keeping the panels and mirrors free from the build-up of dust, lichen, bird droppings and other perks of planetary life is a daily task for solar farm operators. Generally cleaning the panels and mirrors involves having trucks drive around with a large water tank to pressure wash the dirt off, but the use of so much water is problematic in many regions.

Keeping PV panels clean is also a consideration on other planets than Earth. So far multiple Mars rovers and landers have found their demise at the hands of Martian dust after a layer covered their PV panels, and Moon dust (lunar regolith) is little better. Despite repeated suggestions by the peanut gallery to install wipers, blowers or similar dust removal techniques, keeping particulates from sticking to a surface is not as easy an engineering challenge as it may seem, even before considering details such as the scaling issues between a singular robot on Mars versus millions of panels and mirrors on Earth.

There has been research into the use of the electrostatic effect to repel dust, but is there a method that can keep both solar-powered robots on Mars and solar farms on Earth clean and sparkling, rather than soiled and dark?

Continue reading “Giving Solar Power’s Mortal Enemies A Dusting Without Wasting Water”

Polaroid Develops Its Pictures Remotely

For those who didn’t experience it, it’s difficult to overstate the cultural impact of the Polaroid camera. In an era where instant gratification is ubiquitous, it’s easy to forget that there was a time when capturing a photograph meant waiting for film to be developed or relying on the meticulous art of darkroom processing. Before the era of digital photography, there was nothing as close to instant as the Polaroid. [Max] is attempting to re-capture that feeling with a modified Polaroid which instantly develops its pictures in a remote picture frame.

The build is based on a real, albeit non-functional, Polaroid Land Camera. Instead of restoring it, a Raspberry Pi with a camera module is placed inside the camera body and set up to capture pictures. The camera needs to connect to a Wi-Fi network before it can send its pictures out, though, and it does this automatically when taking a picture of a QR code. When a picture is snapped, it sends it out over the Internet to wherever the picture frame is located, which has another Raspberry Pi inside connected to an e-ink screen. Once a picture is taken on the camera it immediately shows up in the picture frame.

To help preserve the spirit of the original Polaroid, at no point is an image saved permanently. Once it is sent to the frame, it is deleted from the camera, and the next picture taken overwrites the last. And, for those who are only familiar with grayscale e-ink displays as the integral parts of e-readers, there have been limited options for color displays for a while now, as we saw in this similar build which was painstakingly built into a normal-looking picture frame as part of an attempted family prank.

Continue reading “Polaroid Develops Its Pictures Remotely”

Building A Peltier-Powered Cloud Chamber

If you’ve been watching Oppenheimer and it’s gotten you all excited about the idea of radioactive decay, you might want to visualize it. A cloud chamber is the perfect way to do that, and [NuclearPhoenix] is here to show us just how to build one.

The build relies on a Peltier device to cool a 10 cm square copper plate down to temperatures as low as -30 °C (-22 °F). Isopropyl alcohol is evaporated via warming resistors within the cloud chamber, and then condenses in the cooled area, creating a thin layer of fog. Ionizing radiation that passes through the chamber can then be spotted by the the trails it leaves through the fog. It’s even possible to identify the type of radiation passing through by the type of trail it leaves. Alpha particles leave shorter traces, while more energetic beta particles which are difficult to stop tend to streak further.

It bears noting that if you see a ton of activity in your cloud chamber at home, it might be worth making some enquiries. Some cloud chambers you’ll see in museums and the like use a small radioactive source to generate some excitement for viewers, though. Video after the break.

Continue reading “Building A Peltier-Powered Cloud Chamber”