Peltier Mini Fridge For Class By Class

How do you keep a few sodas in your classroom cool? Well, if you are teacher [Ethan Hunt], you have your students design and build a solid-state mini refrigerator that can beat his prototype fridge. The prototype uses a Peltier effect module to get three cans down to 11 C (52 F), with a final goal of reaching 5 C (41 F). It’s not all fun and games either — [Ethan] provides a suggested lesson plan with a total of thirteen modules made to fit in an hour each.

Peltier effect modules, also known as solid-state heat pumps, used to be exotic tech but are now quite common. They are actually the reverse of the Kelvin effect. Thermocouples exploit the Kelvin effect by measuring current flowing due to temperature differences.

Solid-state heat pumps use current flowing to create a comparable temperature difference. However, that’s also the catch. One side of the heat pump gets cold, but the other side gets equally hot. That heat has to go somewhere. The same is true, of course, of a “real” refrigerator or an air conditioner.

The lessons would be perfect to adapt for a class, a kid’s club, or even homeschooling. We’d love to see what your students build. You probably won’t be making liquid nitrogen with this setup. But we have seen more than one mini-fridge.

Building A Peltier-Powered Cloud Chamber

If you’ve been watching Oppenheimer and it’s gotten you all excited about the idea of radioactive decay, you might want to visualize it. A cloud chamber is the perfect way to do that, and [NuclearPhoenix] is here to show us just how to build one.

The build relies on a Peltier device to cool a 10 cm square copper plate down to temperatures as low as -30 °C (-22 °F). Isopropyl alcohol is evaporated via warming resistors within the cloud chamber, and then condenses in the cooled area, creating a thin layer of fog. Ionizing radiation that passes through the chamber can then be spotted by the the trails it leaves through the fog. It’s even possible to identify the type of radiation passing through by the type of trail it leaves. Alpha particles leave shorter traces, while more energetic beta particles which are difficult to stop tend to streak further.

It bears noting that if you see a ton of activity in your cloud chamber at home, it might be worth making some enquiries. Some cloud chambers you’ll see in museums and the like use a small radioactive source to generate some excitement for viewers, though. Video after the break.

Continue reading “Building A Peltier-Powered Cloud Chamber”

Minecraft furnace IRL

Replica Minecraft Furnace Actually Powers The Game

Let’s face it, we all need a little distraction sometimes, especially lately. And for our money, there’s no better way to put your brain in park than to start up a Minecraft world and get to digging. The simple graphics, the open world, and the lack of agenda other than to find resources and build things are all very soothing.

But play the game long enough and you’re bound to think about what it would be like if the game world crossed over into the real world. The ironically named [Michael Pick] did just that when he managed to craft a real Minecraft furnace that can actually power the game. Of course, there are some liberties taken with the in-game crafting recipe for a furnace, which is understandable for a game that allows you to punch trees with a bare fist to cut them down.

Rather than using eight blocks of cobblestone to build his furnace, [Michael] made a wooden shell for a commercial folding camp stove. Insulated from the shell by a little cement board, the furnace looks pretty true to the in-game item. To generate the electricity needed to run the game, he used a pair of thermoelectric camping generators. With the stove filled with wood — presumably un-punched — the generators put out enough juice to at least partially charge a battery bank, which was then used to power a Raspberry Pi and 7″ monitor. His goal was to get enough power from the furnace to do a speed run in the game and find three diamonds to build a diamond pickaxe. Honestly, we’re jealous — our first diamonds never come that easy.

We’ve seen other Minecraft-IRL crossovers before. Fancy a ride in a minecart? We’ve got that covered. Or maybe you’d rather control a desk lamp from within the game? That’s a thing, too.

Continue reading “Replica Minecraft Furnace Actually Powers The Game”

Self-frosting snowman

Peltier Snow Globe Features Snowman Who Dresses Himself In Real Frost

We doubt that few of us ever thought that snow globes contain real snow, but now that we’ve seen a snow globe that makes its own snow, we have to admit the water-filled holiday decorating mainstay looks a little disappointing.

Like a lot of the Christmas decorations [Sean Hodgins] has come up with over the years, this self-frosting snowman is both clever in design and cute in execution. The working end is a piece of aluminum turned down into the classic snowman configuration; the lathe-less could probably do the same thing by sticking some ball bearings together with CA glue. Adorned with 3D-printed accessories, the sculpture sits on a pedestal of Peltier coolers, stacked on top of a big CPU cooler. Flanking the as-yet underdressed snowman is a pair of big power resistors, which serve as heating elements to fill the globe with vapor. [Sean]’s liquid of choice is isopropyl alcohol, and it seems to work very well as the figurine is quickly enrobed with frost.

But wait, there’s more — as [Sean] points out, the apparatus is 90% of the way to being a cloud chamber. Maybe we’ll see a less festive version after the holidays. Until then, enjoy his ornament that prints other ornaments, his blinkenlight PCB tree-hangers, or his tiny TV that plays holiday commercials.

Continue reading “Peltier Snow Globe Features Snowman Who Dresses Himself In Real Frost”

Feel What The Temperature Is Like Outside Without Leaving Your Bed

Your smartphone might be able to tell you what the weather is like outside, but you’d have to go outside yourself to really feel it. To do this from the comfort of your own bed, [Sagarrabanana] built a clock that lets you really feel the temperature. Video below with English subtitles.

It is basically a box with a solenoid inside to knock out the time, and a Peltier plate on top. Give the box two knocks, which are detected by a piezo element,  and it will tell you the current time down to 15 minute increments in “bell tower” format. Give it three knocks, and the ESP8266 will fetch the ambient outside temperature from a cloud service and cool or heat the Peltier element to that temperature, using a H-bridge motor driver module. The code and design files are available on GitHub if you want to build your own.

All the components are housed inside an attractive 3D printed box with a machined wood top. Although we think this is a very interesting idea, we can’t help but suspect that it might be counterproductive for getting you out of bed on those cold winter mornings.

While alarm clocks are falling out of favor, they are still a popular build for hackers. We’ve covered one that looks like it came from a fallout shelter, and another with a very cool looking VFD display. Continue reading “Feel What The Temperature Is Like Outside Without Leaving Your Bed”

Growing The World’s Largest Snowflake

Plenty of areas around the world don’t get any snowfall, so if you live in one of these places you’ll need to travel to experience the true joy of winter. If you’re not willing to travel, though, you could make some similar ice crystals yourself instead. While this build from [Brian] aka [AlphaPhoenix] doesn’t generate a flurry of small ice crystals, it does generate a single enormous one in a very specific way.

The ice that [Brian] is growing is created in a pressure chamber that has been set up specifically for this hexagonal crystal. Unlike common ice that is made up of randomly arranged and varying crystals frozen together, this enormous block of ice is actually one single crystal. When the air is pumped out of the pressure chamber, the only thing left in the vessel is the seed crystal and water vapor. A custom peltier cooler inside with an attached heat sink serves a double purpose, both to keep the ice crystal cold (and growing) and to heat up a small pool of water at the bottom of the vessel to increase the amount of water vapor in the chamber, which will eventually be deposited onto the crystal in the specific hexagonal shape.

The build is interesting to watch, and since the ice crystal growth had to be filmed inside of a freezer there’s perhaps a second hack here which involved getting the camera gear set up in that unusual environment. Either way, the giant snowball of an ice crystal eventually came out of the freezer after many tries, and isn’t the first time we’ve seen interesting applications for custom peltier coolers, either.

Continue reading “Growing The World’s Largest Snowflake”

Homebrew Metrology The CERN Way

We won’t pretend to fully grok everything going on with this open-source 8.5-digit voltmeter that [Marco Reps] built. After all, the design came from the wizards at CERN, the European Organization for Nuclear Research, home to the Large Hadron Collider and other implements of Big Science. But we will admit to finding the level of this build quality absolutely gobsmacking, and totally worth watching the video for.

As [Marco] relates, an upcoming experiment at CERN will demand a large number of precision voltmeters, the expense of which led to a homebrew design that was released on the Open Hardware Repository. “Homebrew” perhaps undersells the build a bit, though. The design calls for a consistent thermal environment for the ADC, so there’s a mezzanine level on the board with an intricately designed Peltier thermal control system, including a custom-machined heat spreader blocker. There’s also a fascinatingly complex PCB dedicated solely to provide a solid ground between the analog input connector — itself a work of electromechanical art — and the chassis ground.

The real gem of this whole build, though, is the vapor-phase reflow soldering technique [Marco] used. Rather than a more-typical infrared process, vapor-phase reflow uses a perfluropolyether (PFPE) solution with a well-defined boiling point. PCBs suspended above a bath of heated PFPE get bathed in inert vapors at a specific temperature. [Marco]’s somewhat janky setup worked almost perfectly — just a few tombstones and bridges to fix. It’s a great technique to keep in mind for that special build.

The last [Marco Reps] video we featured was a teardown of a powerful fiber laser. It’s good to see a metrology build like this one, though, and we have a feeling we’ll be going over the details for a long time.

Continue reading “Homebrew Metrology The CERN Way”