Fuzzy Skin Finish For 3D Prints, Now On Top Layers

[TenTech]’s Fuzzyficator brings fuzzy skin — a textured finish normally limited to sides of 3D prints — to the top layer with the help of some non-planar printing, no hardware modifications required. You can watch it in action in the video below, which also includes details on how to integrate this functionality into your favorite slicer software.

Little z-axis hops while laying down the top layer creates a fuzzy skin texture.

Fuzzyficator essentially works by moving the print nozzle up and down while laying down a top layer, resulting in a textured finish that does a decent job of matching the fuzzy skin texture one can put on sides of a print. Instead of making small lateral movements while printing outside perimeters, the nozzle does little z-axis hops while printing the top.

Handily, Fuzzyficator works by being called as a post-processing script by the slicer (at this writing, PrusaSlicer, Orca Slicer, and Bambu Studio are tested) which also very conveniently reads the current slicer settings for fuzzy skin, in order to match them.

Non-planar 3D printing opens new doors but we haven’t seen it work like this before. There are a variety of ways to experiment with non-planar printing for those who like to tinker with their printers. But there’s work to be done that doesn’t involve hardware, too. Non-planar printing also requires new ways of thinking about slicing.

Continue reading “Fuzzy Skin Finish For 3D Prints, Now On Top Layers”

This Week In Security: Linux VMs, Real AI CVEs, And Backscatter TOR DoS

Steve Ballmer famously called Linux “viral”, with some not-entirely coherent complaints about the OS. In a hilarious instance of life imitating art, Windows machines are now getting attacked through malicious Linux VM images distributed through phishing emails.

This approach seems to be intended to fool any anti-malware software that may be running. The VM includes the chisel tool, described as “a fast TCP/UDP tunnel, transported over HTTP, secured via SSH”. Now that’s an interesting protocol stack. It’s an obvious advantage for an attacker to have a Linux VM right on a target network. As this sort of virtualization does require hardware virtualization, it might be worth disabling the virtualization extensions in BIOS if they aren’t needed on a particular machine.

AI Finds Real CVE

We’ve talked about some rather unfortunate use of AI, where aspiring security researchers asked an LLM to find vulnerabilities in a project like curl, and then completely wasted a maintainer’s time on those bogus reports. We happened to interview Daniel Stenberg on FLOSS Weekly this week, and after he recounted this story, we mused that there might be a real opportunity to use LLMs to find vulnerabilities, when used as a way to direct fuzzing, and when combined with a good test suite.

And now, we have Google Project Zero bringing news of their Big Sleep LLM project finding a real-world vulnerability in SQLite. This tool was previously called Project Naptime, and while it’s not strictly a fuzzer, it does share some similarities. The main one being that both tools take their educated guesses and run that data through the real program code, to positively verify that there is a problem. With this proof of concept demonstrated, it’s sure to be replicated. It seems inevitable that someone will next try to get an LLM to not only find the vulnerability, but also find an appropriate fix. Continue reading “This Week In Security: Linux VMs, Real AI CVEs, And Backscatter TOR DoS”

Ask Hackaday: How Much Would You Stake On An Online Retailer

On the bench where this is being written, there’s a Mitutoyo vernier caliper. It’s the base model with a proper vernier scale, but it’s beautifully made, and it’s enjoyable to see younger hardware hackers puzzle over how to use it. It cost about thirty British pounds a few years ago, but when it comes to quality metrology instruments that’s really cheap. The sky really is the limit for those in search of ultimate accuracy and precision. We can see then why this Redditor was upset when the $400 Mitutoyo they ordered from Amazon turned out to be nothing of the sort. We can’t even call it a fake, it’s just a very cheap instrument stuffed oddly, into a genuine Mitutoyo box.

Naturally we hope they received a refund, but it does raise the question when buying from large online retailers; how much are we prepared to risk? We buy plenty of stuff from AliExpress in out community, but in that case the slight element of chance which comes with random Chinese manufacture is offset by the low prices. Meanwhile the likes of Amazon have worked hard to establish themselves as trusted brands, but is that misplaced? They are after all simply clearing houses for third party products, and evidently have little care for what’s in the box. The £30 base model caliper mentioned above is an acceptable punt, but at what point should we go to a specialist and pay more for some confidence in the product?

It’s a question worth pondering as we hit the “Buy now” button without thinking. What’s your view? Let us know in the comments. Meanwhile, we can all be caught with our online purchases.

Thanks [JohnU] for the tip.

Teaching A Pi Pico E-Ink Panel New Tricks

We’ve noticed that adding electronic paper displays to projects is getting easier. [NerdCave] picked up a 4.2-inch E-ink panel but found its documentation a bit lacking when it came to using the display under MicroPython. Eventually he worked it out, and was kind enough to share with the rest of the class.

These paper-like displays draw little power and can hold static images. There were examples from the vendor of how to draw some simple objects and text, but [NerdCave] wanted to do graphics. There was C code to do it, but it wasn’t clear how to port it to Python.

The key was to use the image2cpp website (we’ve used it before, but you can also use GIMP). Instead of C code, though, you get the raw bytes out and place them in your Python code. Once you know the workflow, it isn’t that hard, and this is an inexpensive way to add a different kind of display to your projects. The same image conversion will help you work with other displays, too.

We aren’t sure what driver chip this particular display uses, but if you have one with the UC8151/IL0373, you can find some amazing MicroPython drivers for those chips.

Continue reading “Teaching A Pi Pico E-Ink Panel New Tricks”