Caption CERN Contest — Prize Upgrade This Week

Week 13 of the Caption CERN Contest might be gone, but our intrepid scientist is still rocking his caffeine rush. Thanks for the captions! We’re still trying to figure out if the faces in on the wall are anyone famous – and who exactly are in the cartoon postcards toward the top of the wall. A few readers picked up on what looks to be a compressed air hose in the background. Every office has their coffee station, but we’re betting this particular CERN lab had some seriously frothy milk!

The Funnies:

  • “Schroedinger’s fist-bump” – [Jarrett]
  • “Even though the other scientists had rejected John’s idea to control the accelerator with a six speed manual transmission, he would often close his eyes and imagine shifting through the gears of a machine with a few trillion electron volts under the hood.”- [MechaTweak]
  • “At CERN the coffee doesn’t have a lot of kick, but it does have some punch..” – [THX1082]

The winner for this week is [Matt] with ‘”this is going to make one gooood coffee rush selfie. All my friends are doing it. We post them on the wall.” – CERN staff really were ahead of their time.’ [Matt] won a sweet Robot Head T-Shirt From The Hackaday Store!

Week 14: Prize Upgrade!

cern-14-smWe’ve seen a lot of strange equipment here at Hackaday, but Week 14’s image left us at a loss for words, at least for a few minutes. What the heck is this thing? Pressure vessel? RF chamber? Looking at this image and another one depicting a strange device in CERN’s labs, we haven’t the foggiest idea. We do know it’s large, and these two CERN scientists are working hard to get it ready for… something. It also has fins. Fins make everything cooler. Beyond that – we’re leaving this one in the capable hands of our caption team on Hackaday.io.

buspirate2We’re sweetening the pot a bit this week. Up until now, our weekly prize has been a T-shirt. While clothing is important, we know that hackers love hacking tools, so this week’s prize will be a Bus Pirate from The Hackaday store. We’ll try to change it up each week with a different device.

Add your humorous caption as a comment to this project log. Make sure you’re commenting on the contest log, not on the contest itself. As always, if you actually have information about the image or the people in it, let CERN know on the original image discussion page.

Good Luck!

Hacklet 45 – Reverse Engineering Projects

Sooner or later, all of us end up putting on our reverse engineering hats and digging in to a device. It might be that you’re trying to keep an old piece of equipment running – the manufacturer is long defunct, and parts are no longer available. It might be that sweet new router with locked down firmware. Or, it might just be that you’re curious. Whatever the reason, reverse engineering is a rewarding endeavor. Some of our favorite reverse engineering projects read like spy novels. Instead of cloak and dagger, it’s encryption and soldering iron. This week’s Hacklet focuses on some of the best reverse engineering projects on Hackday.io!

c02We start with [Henryk Plötz] and Reverse-Engineering a low-cost USB CO₂ monitor. Carbon monoxide detection and measurement devices are household safety items these days, and have become rather cheap. Carbon dioxide measuring devices are less common, and as expected, more expensive. [Henryk] found a device for around 80€ which did what he needed. The included USB connector was supposedly just for power, but when plugging it in, the device enumerated on his Linux box. The accompanying windows software displayed live data from the detector, but there wasn’t much information on the protocol. Time to bust out Ida pro, and go to town on that software! [Henryk] did battle with his CO₂ monitor”s software and was justly rewarded.

mavrickNext up is [Bob Blake] and Reverse Engineering the Maverick ET-732. [Bob] loves barbecue, but hates to babysit his smoker. Thankfully there are wireless temperature sensors out there built just for that purpose, but they have limited range and you can’t have multiple receivers around the house. [Bob] aimed to fix all of that by sending his Maverick wireless thermometer data to the web, so he could check in on his cooking from anywhere. First he had to reverse engineer the protocol used by the sensor. A spectrum analyzer told [Bob] that the sensor transmit frequency was  433.92 MHz, which is common for low-cost transmitters like this. [Bob] actually had some compatible receivers at his office, so he was quickly able to capture some data with his Saleae logic analyzer. The real fun came in figuring out exactly how the data was organized!

hmdA chance Ebay sale netted [Technics] a sweet head mounted magnifier, but no way to control it. Reverse engineering a Life Optics M5 documents [Technics] efforts to get his new headgear working. The Life Optics M5 is actually a re-branded version of the Leica HM500 head mounted zoom microscope. These devices were originally designed for medical use. They provide a stereo view to the surgeon or dentist using them, as well as sending a video feed to be displayed for the rest of the team to use or record. Cracking open the M5’s head-mounted box revealed several modules, but no obvious means of controlling zoom or focus. Scoping out a few of the mystery wires did reveal what looks to be a 9600 baud serial data stream though. This is a brand new project, and we’re waiting for [Technics] next update to see if he gets to do some soldering with his new toy!

 

biosBIOS password protection – it’s the bane of any used laptop buyer’s existence. Sometimes removing these passwords are as easy as popping out the CMOS battery, other times, not so much. [q3k] found themselves in the latter situation with a bundle of Toshiba R100 laptops. and no way to start them up. [q3k] didn’t give up though – they broke out the soldering iron and started Reverse engineering Toshiba R100 BIOS. The R100 is a Pentium M era machine – old but still usable for many hacking purposes. Dumping the ROM BIOS of the laptop didn’t yield the information [q3k] needed, so they moved on to the TLCS-870 controller, and built a really nice board with a Xilinx Spartan6 FPGA to help with the effort. It turns out that the 870 is just used for power management. – [q3k] has now turned their attention to a Renesas microcontroller which might be just the droid they are looking for!

We think that reverse engineering projects are pretty darn cool, so we’ve created a Reverse Engineering List to keep them all organized.

That’s it for this Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Caption CERN Contest Week 13

Week 12 of the Caption CERN Contest and the strange stringed scientific instrument it brought along are both history. As always, thank you for your captions! They provided quite a few chuckles in the busy week gearing up for our Hackathon. We’re still not sure exactly what is being built here – Our best guess is it’s some sort of detector for emissions. But what sort of emissions? Was CERN looking for electric fields, magnetic fields, or something else entirely? It’s interesting to note that just as the photographer’s flash reflected in all 5 layers of wire, an RF signal would bounce off the rear reflector and strike the wires.

The Funnies:

  • “Ooh, it’s so beautiful, is this a harp?”
    “Close, it is for HAARP” – [Federico Churca-Torrusio]
  • “Bones was right this thing will scatter your molecules across space.”- [scott galvin]
  • “Eight years of schooling and two post doctoral fellowships just so I can make quilts. I should have been a dentist.” – [Narfnezzle Nickerbots]

The winner for this week is [THX1082] with “CERN’s early attempts at developing “String theory”. They’re doing it wrong. [THX1082] will be at his next hackerspace meeting wearing a CRT Android T-Shirt From The Hackaday Store!

Week 13: Coffee time at CERN!

cern-13-smEvery week we get at least one caption explaining that the strange piece of equipment included in that week’s image is a coffee maker. I thought it would only be right to include this shot of CERN’s real coffee nook, and a scientist about to enjoy a fresh cup of liquid “get ‘er done”. I have to thank CERN’s photographer for grabbing this slice of life shot!

It’s worth taking the time to check out the high res JPEG direct from CERN, as you can really zoom in on the post cards and photographs in the background. One even says “Tout va tres bien” – which Google translates to “Everything is going very well”. Some jokes never get old!

Add your humorous caption as a comment to this project log. Make sure you’re commenting on the contest log, not on the contest itself.

As always, if you actually have information about the image or the people in it, let CERN know on the original image discussion page.

Good Luck!

[Jay] Turns Over A New Leaf, Scores Batteries

[Jay] got a pretty good deal on a low milage Nissan Leaf battery. Unfortunately, it came wrapped in a wrecked Nissan Leaf. There are more and more electric cars on the road each year, and that means there are more cars coming off the road as well due to accidents. Electric cars are specifically designed to protect their batteries, so as we’ve seen before with Tesla vehicles,  a salvage car often will still contain a serviceable battery pack. [Jay] used this knowledge to his advantage, and walks us through his experience buying, testing, and dismantling Hoja, his very own salvage Leaf.

[Jay] set up an account on Copart, an auto salvage auction website here in the USA. “Live” online Auto auctions tend to work a bit differently than E-bay, so [Jay] walks us through the process of buying the car, and gives some tips for getting through the process. [Jay’s] particular car was delivered to him on a trailer. It had been rear ended so hard that the rear tires were not usable. The car was also electrically dead. Thankfully, the electrical problems turned out to be a discharged 12 volt accessory battery. A quick charge of the accessory battery caused the Leaf to spring to life – and display a ton of trouble codes. [Jay] cleared the codes with his trusty OBD II scanner, and the car was ready to drive, at least as much as a wrecked car can drive. It did move under its own power though – with the rear end riding on dollies.

Now that the battery was known to be good, [Jay] set about liberating it from its crushed Leaf cocoon. Nissan’s service manual assumes one would be doing this with a lift. [Jay] had no such luxuries in his driveway, so he used 3 floor jacks to lower the 600 lb battery and dollies to pull it out from under the car.

Click past the break for the rest of the story.

Continue reading “[Jay] Turns Over A New Leaf, Scores Batteries”

Hacklet 44 – Teardowns

Just about every hacker, maker and tinkerer out there received their early education the same way: A screwdriver in one and a discarded bit of electronics in the other. There is no better way to find out how something works than cracking it open and examining each piece.  In recent years, teardown videos have become popular on YouTube, with some of the great examples coming from users like [EEVblog], [mikeselectricstuff], and [The Geek Group]. This week’s Hacklet is all about the best teardown projects on Hackaday.io!

copierWe start with [zakqwy] and his Savin C2020 Teardown. Photocopiers (and multifunction machines) are the workhorses of the modern office. This means there are plenty of used, abused, and outdated photocopiers available to hackers. [Zakqwy] got this monster when it started misbehaving at his office. Copiers are a venerable cornucopia of motors, gears, sensors (lots and lots of breakbeam sensors) and optics. The downside is toner: it’s messy, really bad to breathe, and if you don’t wear gloves it gets down into the pores of your skin, which takes forever to get out. [Zakqwy] persevered and found some awesome parts in his copier – like an  Archimedes’ screw used to transport black toner.

wemoNext up is [Bob Blake] with Belkin WeMo Insight Teardown. [Bob] wanted a WiFi outlet, but wasn’t about to plug something in to both his power grid and his network without taking it apart first. [Bob] did an awesome job of documenting his teardown with lots of great high resolution photos – we love this stuff! He found a rather well thought out hardware design. The Insight has 3 interconnected PCBs inside. The power switching and supply circuits are all on one board. It includes slots and the proper creep distances one would expect in a design that will be carrying 120V AC mains power. A small daughter board holds an unknown chip – [Bob] is guessing it is the power sensing circuitry. A third board a tucked in at the top of the module holds the main CPU, a Ralink/MediaTek RT5350F SoC, RAM, and the all important WiFi antenna.

 

x-ray[Drhatch] took things into the danger zone with an X-ray Head Teardown. We’re not sure if [Drhatch] is a real doctor, but he does have a Heliodent MD dental X-ray head. Modern X-ray machines are generally radiation safe if they’re not powered up. Radiation isn’t the only dangers to worry about though – there are latent charged capacitors and cooling oils which may contain nasty chemicals like PCBs, among other things. [Drhatch] found some pretty interesting design decisions in his X-ray head. The tube actually fires through the cylindrical high voltage transformer. This means the transformer acts as a beam collimator, focusing the X-ray beam down like a lens. He also found plenty of lead shielding. Interestingly there are two thickness of lead in the housing. Shielding close to the tube is 1 mm thick, while shielding a bit further away is only 0.7 mm thick.

 

3phaseFinally, we have [danielmiester] with Inside a 3ph AC Motor Controller(VFD). [Daniel] tore down a Hitachi Variable-Frequency Drive (VFD) with the hopes of creating a frequency converter for a project. These high voltage, high power devices have quite a bit going on inside, so the conversion became a teardown project all its own. VFDs such as this one are used in industry to drive high power AC motors at varying speeds efficiently. As [Daniel] says, the cheaper ones are ” just really fancy PWM modules”. Handling 1.5 kW is no joke though. This VFD had a large brick of power transistors potted into its heat sink. The controller board was directly soldered to the transistors, as well as the rectifier diodes for the DC power supply. [Daniel] was doing some testing with the unit powered up, so he built a custom capacitor discharge unit from 3 C7 Christmas lights. Not only did they keep the capacitors discharged, they provided an indication that the unit was safe. No light means no charge.

Not satisfied? Want more teardown goodness? Check out our freshly minted Teardown List!

That’s about all the time we have for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Review: Transistor Tester

Amazon has been getting creepier and creepier lately with their recommendations.  Every time I log in, I’m presented with a list of new Blinky LEDs, Raspberry Pi accessories, Arduino shields, and the like. It’s as if they know me. Their customer database paid off when it recommended a $22 transistor / component tester. I’ve been seeing those testers around quite a bit lately. Curiosity got the better of me and my mouse found its way to the “Buy it now with one click” button. Two days later I had a “SainSmart Mega328 Transistor Tester Diode Triode Capacitance ESR Meter MOS/PNP/NPN L/C/R” in my hands.

I’m going to get the obvious out of the way. This thing is built cheap – as cheap as the factories can make it. My particular unit arrived with the LCD flapping in the breeze, hanging on by its flex cable. Fitting the LCD back into the acrylic backlight frame revealed a slightly worrisome twist in that same flex. Thankfully nothing was actually damaged, though I do want to give the flex cable some protection in the future. More on that later. The circuitry was open for all the world to see on the bottom of the tester. The heart of the unit is an ATmega328. Supporting it are a few transistors and a handful of passives.

I didn’t have huge expectations for the tester, but I hoped it would at least power up.  Hooking up a 9 volt battery and pressing the magic button brought the tester to life. Since I didn’t have anything in the socket, it quickly lit up and displayed its maker information – “91make.taobao.com”, and “By Efan & HaoQixin”, then it informed me that I had “No, unknown, or damaged part”.

I had a few resistors lying around the bench (doesn’t everyone?) so I put one in. The tester read it as 9881 ohms. Sure enough, it was a 10K 5% resistor.  Capacitors – ceramic disc, electrolytic, and surface mount all worked as well. The tester even provided ESR values. The real test would be a transistor. I pulled an old  2N2222 in a TO-18 metal can, and popped it in the tester. The damn thing worked – it showed the schematic symbol for an NPN transistor with Collector, Base, and Emitter connected to Pins 1,2,and 3 respectively. Flipping the pins around and re-testing worked as well. The tester showed hFe as 216, and forward voltage as 692 mV, both reasonable numbers for a 2N2222.

triacThe tester worked surprisingly well – it was able to correctly identify BJTs, FETs, even esoteric parts. The only thing it balked on was a linear voltage regulator, which showed up as two diodes. Regulators are a bit more than a simple device though, so I can’t blame the tester there.  The values returned were all reasonable as well. While I don’t have a calibrated lab to check against, the numbers lined up with my Fluke meter.

So what exactly is driving this little tester? There are about 20 versions of it on the market, all of them from China. 91make is a seller on taobao.com, often referred to as “China’s ebay.” 91make’s front page features no less than 7 versions of the transistor tester, with various cases and LCDs. Some digging turned up the history on this device. It turns out the transistor tester is an open source hardware project (translated) originally created by [Markus Frejek], and built upon by [Karl-Heinz Kubbeler] and a number of others. The Subversion repository  for the project shows it is quite active, with the most recent check-in only a few hours ago. The project is also well documented. The English PDF is 103 pages, explaining theory of operation, the circuit itself, and the software. The document even explains some of the shortcomings of the Chinese versions of the tester, including using a zener diode where the original schematic calls for a precision 2.5V reference. Yes, it will work, but it won’t be as accurate as the original.

The devs also don’t officially support the clones which I can understand, considering the quality and changes in design each manufacturer is baking in to their own version. There is  a huge thread on the EEVblog forum covering these testers. Some can be modified to be closer to the official version. In fact, with an ISP tool the intrepid hacker can update the firmware to the current rev from [Karl-Heinz’s] repository.

So the final verdict on this tester is that it is a thumbs up with a small caveat. These testers are built down to a cost (and that cost is as close to zero as possible). They’re great for sorting parts, but they’re no substitute for a higher quality measuring device. I’d also love to see a version that supports the original developers.

Caption CERN Contest Week 12

Week 11 of the Caption CERN Contest has flown by faster than the mullet or hammer pants. Thank you for all the wonderful captions. Some of our astute readers noticed that this week’s photo actually worked as cross view 3D image. This was unintentional, but a pretty cool bonus. The telephone in the background moved just enough to give the image some depth. We probably will never know what exactly these scientists were working on, and why they needed a PDP 11 with some custom hardware to run calculations. They definitely provided us with some entertaining captions though!

The Funnies:

  • “I know this PDP was expensive, but do we all REALLY need to take a photo with it? I have like serious science to do!” – [Matthew Hoskins]
  • “They all laughed at Jane when she said she was going to mine bitcoin with her 168 E. Now they fear the click of her Prada boots and Versace wardrobe. “- [mathew.stevens]
  • “Linda! We didn’t get a PDP-11 to play Zork!” – [el.Cannibal]

The winner for this week is [XLT_Frank] with “These ladies were essential to proper operation at CERN because unlike the men, they read the manuals”. As a reward for his efforts, [XLT_Frank] wins a CRT Android T-Shirt From The Hackaday Store!

On to week 12!

cern-12-smOne of the best parts of running the Caption CERN Contest is checking out the new images on CERN’s servers each week. Every week I find new images to zoom in on. I trace wires, look at equipment ID cards, and generally try to figure out what exactly is going on.

This image is no exception. At first glance, one would think the CERN photographer was trying out some multiple exposure techniques. Zooming in on the high res JPG available at the original CERN page shows that the strange phenomenon in the center of the image are actually layers of fine wire strung between the two sides of the curve. Between that and the 80’s clean room outfits, this must have been a very important piece of scientific equipment!

Add your humorous caption as a comment to this project log. Make sure you’re commenting on the contest log, not on the contest itself.

As always, if you actually have information about the image or the people in it, let CERN know on the original image discussion page.

Good Luck!