Get Your Leafy Meats

Some of us jokingly refer to our hobbies as “mad science,” but [Justin] from The Thought Emporium could be one Igor away from living up to the jibe. The latest project to come out of the YouTube channel, video also after the break, outlines a map for creating an artificial organism in their new lab. The purpose is to test how far a citizen scientist can push the boundary of bioengineering. The stated goal is to create a swimming entity with a skeleton. The Thought Emporium also has a neuron project in the works, hinting at a potential crossover.

The artifishal [sic] organism has themes at the micro and macro scale. [Justin] says, “Cells are like little nano-robots. Mainly in the sense that they just follow their built-in instructions to the best of their ability.” At the multi-cellular level, the goal is to program something to actuate muscle tissue rhythmically to sustain locomotion. The method for creating living parts is decellularization and recellularization, a technique we heard about at Hackaday Belgrade.

The Thought Emporium is improving upon its protocol which removes cells from their “scaffolding” to repopulate it with the desired type, muscle in this case. Cellular scaffolds retain the shape of whatever they were, so whatever grows on them determines what they become. Once the technique of turning a leaf into muscle fibers is mastered, the next step will be creating bones with a different cell line that will mineralize the scaffold. Optimizing the processes and combining the results may show the world what is possible with the dedication of citizen bioengineers.

Regenerative medicine is looking at replacement human-parts with similar techniques. We are eager to see fish that digest plastic.

Continue reading “Get Your Leafy Meats”

Retrofitting Fast Charging To A Nissan Leaf EV

Electric cars have been around for a while now, and thus they’re starting to get chopped up and modded just like any other car. [Daniel Öster] is one such person doing the work, and recently posted his efforts to retrofit fast charging to an base-model Nissan Leaf that didn’t ship with the feature.

[Daniel] uses special high-voltage insulated tools when working on EVs for safety.
It’s an involved swap, requiring the substitution of several parts and surgery on the wiring loom. Cost of components was just 700 euros but the swap required 20 hours of labor. The vehicle in question is an early model Leaf that was already fitted with an upgraded 40 kWh battery, and the owner desired an upgrade to CHAdeMO fast charging to better use the larger pack.

The swap required the power distribution unit to be replaced, and the CHAdeMO port to be installed in the front of the car. The vehicle control module (VCM) also had to be opened in order to run a wire to a relay to activate the fast charging subsystem. Finally, wires had to be spliced to get everything to play nicely between the car and the fast charger.

[Daniel] had the benefit of quality forum resources and a Nissan Leaf that already had CHAdeMO to reference, which helped a lot. At the end of the day, the fast charger worked first time, much to [Daniel]’s relief. We’ve featured his work before, too. Video after the break.

Continue reading “Retrofitting Fast Charging To A Nissan Leaf EV”

Improving More Leaf Design Flaws

[Daniel] was recently featured here for his work in improving the default charging mode for the Nissan Leaf electric vehicle when using the emergency/trickle charger included with the car. His work made it possible to reduce the amount of incoming power from the car, if the charging plug looked like it might not be able to handle the full 1.2 kW -3 kW that these cars draw when charging. Thanks to that work, he was able to create another upgrade for these entry-level EVs, this time addressing a major Leaf design flaw that is known as Rapidgate.

The problem that these cars have is that they still have passive thermal management for their batteries, unlike most of their competitors now. This was fine in the early ’10s when this car was one of the first all-electric cars to market, but now its design age is catching up with it. On long trips at highway speed with many rapid charges in a row the batteries can overheat easily. When this happens, the car’s charging controller will not allow the car to rapid charge any more and severely limits the charge rate even at the rapid charging stations. [Daniel] was able to tweak the charging software in order to limit the rapid charging by default, reducing it from 45 kW to 35 kW and saving a significant amount of heat during charging than is otherwise possible.

While we’d like to see Nissan actually address the design issues with their car designs while making these straighforward software changes (or at least giving Leaf owners the options that improve charging experiences) we are at least happy that there are now other electric vehicles in the market that have at least addressed the battery thermal management issues that are common with all EVs. If you do own a Leaf though, be sure to check out [Daniel]’s original project related to charging these cars.

Continue reading “Improving More Leaf Design Flaws”

Adding Luxury Charging Features To An Entry-Level EV

The Nissan Leaf is the best-selling electric car of all time so far, thanks largely to it being one of the first mass produced all-electric EVs. While getting into the market early was great for Nissan, they haven’t made a lot of upgrades that other EV manufacturers have made and are starting to lose customers as a result. One of those upgrades is charge limiting, which allows different charging rates to be set from within the car. With some CAN bus tinkering, though, this feature can be added to the Leaf.

Limiting the charging rate is useful when charging at unfamiliar or old power outlets which might not handle the default charge rate. In Europe, which has a 240V electrical distribution system, Leafs will draw around 3 kW from a wall outlet which is quite a bit of power. If the outlet looks like it won’t support that much power flow, it’s handy (and more safe) to be able to reduce that charge rate even if it might take longer to fully charge the vehicle. [Daniel Öster]’s modification requires the user to set the charge rate by manipulating the climate control, since the Leaf doesn’t have a comprehensive user interface.

The core of this project is performed over the CAN bus, which is a common communications scheme that is often used in vehicles and is well-documented and easy to take advantage of. Luckily, [Daniel] has made the code available on his GitHub page, so if you’re thinking about trading in a Leaf for something else because of its lack of features it may be time to reconsider.

Continue reading “Adding Luxury Charging Features To An Entry-Level EV”

A Range-Extended Electric Van

The only thing limiting the range on any electric vehicle isn’t really battery technology, but cost. Customers don’t want to pay more money for an electric car or van that does essentially the same thing as one with an internal combustion engine. This in turn limits the amount of batteries manufacturers put in their cars. However, with enough money, and thus enough batteries, electric cars can get whatever range you want as [Muxsan] shows with his Nissan e-NV200 that gets over 400 miles kilometers on a single charge.

The Nissan e-NV200 is a battery electric vehicle (also available as a badge-engineered Chevrolet van in North America) with a drivetrain from the Nissan Leaf. This means that all of the components from the Leaf basically plug-and-play in this van. [Muxsan] took an extra 45 kWh of batteries and was able to splice them in to the existing battery pack, essentially tripling the capacity of the original 24 kWh pack. Some work was needed to the CAN bus as well, and the car’s firmware needed to be upgraded to reflect the new battery pack, but a relatively simple modification otherwise, all things considered.

While watching the video [Muxsan] also notes how much empty space there is all around the van, and Nissan could have easily upgraded the battery pack at any time to allow for more range. It also took the car 10 hours on a 6 kW charger to charge completely, but that’s not unreasonable for 430 miles of range. If your high voltage DC chops are up to snuff, it’s not impossible to find old Leaf batteries for other projects, too.

Continue reading “A Range-Extended Electric Van”

Tiny Robot Clings To Leaves With Static Electricity

Flying is an energy-intensive activity. The birds and the bees don’t hover around incessantly like your little sister’s quadcopter. They flit to and fro, perching on branches and leaves while they plan their next move. Sure, a quadcopter can land on the ground, but then it has to spend more energy getting back to altitude. Researchers at Harvard decided to try to develop flying robots that can perch on various surfaces like insects can.

Perching on surfaces happens electrostatically. The team used an electrode patch with a foam mounting to the robot. This allows the patch to make contact with surfaces easily even if the approach is a few degrees off. This is particularly important for a tiny robot that is easily affected by even the slightest air draft. The robots were designed to be as light as possible — just 84mg — as the electrostatic force is not particularly strong.

It’s estimated that perching electrostatically for a robot of this size uses approximately 1000 times less power than during flight. This would be of great use for surveillance robots that could take up a vantage point at altitude without having to continually expend a great deal of energy to stay airborne. The abstract of the research paper notes that this method of perching was successful on wood, glass, and a leaf. It appears testing was done with tethers; it would be interesting to see if this technique would be powerful enough for a robot that carries its own power source. Makes us wonder if we ever ended up with tiny flyers that recharge from power lines?

We’re seeing more tiny flying robots every day now – the IMAV 2016 competition was a great example of the current state of the art.

Continue reading “Tiny Robot Clings To Leaves With Static Electricity”

Hackaday Prize Entry: A Cheap STM32 Dev Board

Dev boards sporting a powerful ARM microcontroller are the future, despite what a gaggle of Arduino clones from China will tell you. Being the future doesn’t mean there’s not plenty of these boards around, though. The LeafLabs Maple has been around since 2009, and is a fine board if you want all that Processing/Wiring/Arduino goodies in a in an ARM dev board. The Maple has been EOL’d, and that means it’s time for a few new boards that build on what LeafLabs left behind.

This Hackaday Prize entry is for an almost-clone of the Leaflabs Maple Mini. It sports a newer microcontroller, but still has the same bootloader and pinout. The best part? It costs less than four dollars.

The microcontroller inside this Maple Mini clone is the STM32F103, a 32-bit ARM Cortex-M3 running at 72 MHz with 128K of Flash and 20K of SRAM. That’s enough for just about everything you would want to throw at it. It also follows the pinout of the original Maple Mini, and the team also has a version that’s a slight improvement of the original Maple.

The big deal is, of course, the price of the board. It’s four bucks, or about the same price as an Arduino clone from the usual online retailers. Now, finally, there’s a reason for you to wash your hands of the Arduino too.