Ask Hackaday: How’s That Capacitor Shortage Going?

There is a looming spectre of doom hovering over the world of electronics manufacturing. It’s getting hard to find parts, and the parts you can find are expensive. No, it doesn’t have anything to with the tariffs enacted by the United States against Chinese goods this last summer. This is a problem that doesn’t have an easy scapegoat. This is a problem that strikes at the heart of any economic system. This is the capacitor and resistor shortage.

When we first reported on the possibility of a global shortage of chip capacitors and resistors, things were for the time being, okay. Yes, major manufacturers were saying they were spinning down production lines until it was profitable to start them up again, but there was relief: parts were in stock, and they didn’t cost that much more.

Now, it’s a different story. We’re in the Great Capacitor Shortage of 2018, and we don’t know when it’s going to get any better. Continue reading “Ask Hackaday: How’s That Capacitor Shortage Going?”

A $1, Linux-Capable, Hand-Solderable Processor

Over on the EEVblog, someone noticed an interesting chip that’s been apparently flying under our radar for a while. This is an ARM processor capable of running Linux. It’s hand-solderable in a TQFP package, has a built-in Mali GPU, support for a touch panel, and has support for 512MB of DDR3. If you do it right, this will get you into the territory of a BeagleBone or a Raspberry Pi Zero, on a board that’s whatever form factor you can imagine. Here’s the best part: you can get this part for $1 USD in large-ish quantities. A cursory glance at the usual online retailers tells me you can get this part in quantity one for under $3. This is interesting, to say the least.

The chip in question, the Allwinner A13, is a 1GHz ARM Cortex-A8 processor. While it’s not much, it is a chip that can run Linux in a hand-solderable package. There is no HDMI support, you’ll need to add some more chips (that are probably in a BGA package), but, hey, it’s only a dollar.

If you’d like to prototype with this chip, the best options right now are a few boards from Olimex, and a System on Module from the same company. That SoM is an interesting bit of kit, allowing anyone to connect a power supply, load an SD card, and get this chip doing something.

Currently, there aren’t really any good solutions for a cheap Linux system you can build at home, with hand-solderable chips. Yes, you could put Linux on an ATMega, but that’s the worst PC ever. A better option is the Octavo OSD335x SoC, better known as ‘the BeagleBone on a Chip’. This is a BGA chip, but the layout isn’t too bad, and it can be assembled using a $12 toaster oven. The problem with this chip is the price; at quantity 1000, it’s a $25 chip. At quantity one, it’s a $40 chip. NXP’s i.MX6 chips have great software support, but they’re $30 chips, and you’ll need some DDR to make it do something useful, and that doesn’t even touch the fiddlyness of a 600-ball package

While the Allwinner A13 beats all the other options on price and solderability, it should be noted that like all of these random Linux-capable SoCs, the software is a mess. There is a reason those ‘Raspberry Pi killers’ haven’t yet killed the Raspberry Pi, and it’s because the Allwinner chips don’t have documentation and let’s repeat that for emphasis: the software is a mess.

Still, if you’re looking for a cheap chip you can solder at home, this one seems to be the only game in town. We’re really looking forward to seeing what you make with it!

Man’s Best Robotic Friend

When it comes to robotics, some of the most interesting work — and certainly the most hilarious — has come from Boston Dynamics, and their team of interns kicking robotic dogs over. It’s an impressive feat of engineering, and even if these robotic pack mules are far too loud for their intended use on the battlefield, it’s a great showcase of how cool a bunch of motors can actually be.

It’s not quite up there with the Boston Dynamics robots, but [Dimitris]’ project for the Hackaday Prize is an almost equally impressive assemblage of motors, 3D printed parts, SLAM processing and inverse kinematics. I suppose you could also kick it over and watch it struggle for laughs, too.

This robotic dog was first modeled in Fusion 360, and was designed with  22 Dynamixel AX-12A robot actuators: big, beefy, serial-controllable servos. Of course, bolting a bunch of motors to a frame is the easy part. The real challenge here is figuring out the kinematics and teaching this robot dog how to walk. This is still a work in progress, but so far [Dimitris] is able to move the spine, keep the feet level with the ground, and have the robot walk a little bit. There’s still work to do, but there’s an incredible amount of work that’s already been done.

The upcoming features for this robot include a RealSense camera mounted on the head for 3D visualization of the surroundings. There’s also plans for a tail, loosely based on some of the tentacle robots we’ve seen. It’s going to be a great project when it’s done, and it’s already an excellent entry for the Hackaday Prize.

Continue reading “Man’s Best Robotic Friend”

The Desktop Computer Returns As Amiga-Infused Retro Case

The desktop computer is dead. No, I don’t mean computers that are meant to sit either on or underneath a desk. I’m talking about computer cases that are placed on a desk horizontally, probably with a monitor on top. The ‘monitor stand case’ was a mainstay for most of the 80s and 90s, but died out when CRTs became too heavy.

Now, though, there’s an interesting Kickstarter project that aims to bring the desktop computer case back, and it’s doing it as an upgrade to the classic Amiga 500, Amiga 1200, and Amiga 600 computers.

The idea for this project began all the way back in the 80s, with the Checkmate A1500 computer case. This case was designed to add expansion capabilities to the low-end Amiga 500 computer, transforming it into a desktop system with extra floppies, a hard drive, and an expansion port. In effect, you could have a ‘professional’ Amiga system for half the price of Commodore’s product offerings.

Now the Checkmate is back, this time with a case upgrade that will transform an A500, A600, A1200, or even the PPC Aeon Tabor A1222 motherboard. There’s another trick this case has to offer: it’s also compatible with MicroATX and Mini-ITX motherboards, meaning yes, there is now going to be a real desktop case that you can throw a motherboard in and a monitor on top.

The death of the desktop computer is an absolutely tragic tale that has resulted in people dropping towers on a floor and propping up their LCDs on piles of books. The reason why we do this is understandable — when CRTs got too heavy for plastic enclosures, computers became towers. Now, though, we’re all using featherweight LCDs, and computers could easily return to the desktop.

Hackaday Links Column Banner

Hackaday Links: September 16, 2018

Apple released a phone, the most phone in the history of phones. It’s incredible.

There are four machines that are the cornerstone of electronic music. The TR-808, the TR-909, the TB-303, and the SH-101 are the machines that created techno, house, and every other genre of electronic music. This week at KnobCon Behringer, the brand famous for cheap mixers, other audio paraphernalia of questionable quality, and a clone of the Minimoog, teased their clone of the 909. Unlike the Roland reissue, this is a full-sized 909, much like Behringer’s clone of the 808. Price is said to be under $400, and the best guess on the release is, ‘sometime in the next year’

Speaking of synths, [jan] has created a ton of electronic musical instruments based around single chips. There’s one that fits inside a MIDI plug, and another that also adds a keyboard. Now he has an ‘educational kit’ on IndieGoGo. It’s surprisingly cheap at $19.

Europe, currently.

Europe is outlawing memes (I’m 12 and what is this?).

The EU parliament adopted a proposal for a Copyright Directive, the most onerous proposal being Article 13, requiring platforms to adopt copyright filters to examine everything uploaded to a platform.

The takeaway analogy is that this proposal is opposite of the DMCA’s Safe Harbor provision that protects ISPs from consequences of user’s actions; If Article 13 is adopted, an image-hosting service could be sued by copyright holders because users uploaded copyrighted images.

Needless to say, this is dumb, and a massive opportunity for you to become a startup founder. Companies like Google and Facebook already have robots and databases crawling their servers looking for copyrighted content, but smaller sites (hackaday.io included) do not have the resources to build such a service themselves. You’re looking at a massive B2B startup opportunity when these copyright directives pass.

Turn Yourself Into A Cyborg With Neural Nets

If smartwatches and tiny Bluetooth earbuds are any indications, the future is with wearable electronics. This brings up a problem: developing wearable electronics isn’t as simple as building a device that’s meant to sit on a shelf. No, wearable electronics move, they stretch, people jump, kick, punch, and sweat. If you’re prototyping wearable electronics, it might be a good idea to build a Smart Internet of Things Wearable development board. That’s exactly what [Dave] did for his Hackaday Prize entry, and it’s really, really fantastic.

[Dave]’s BodiHub is an outgrowth of his entry into last year’s Hackaday Prize. While the project might not look like much, that’s kind of the point; [Dave]’s previous projects involved shrinking thousands of dollars worth of equipment down to a tiny board that can read muscle signals. This project takes that idea a bit further by creating a board that’s wearable, has support for battery charging, and makes prototyping with wearable electronics easy.

You might be asking what you can do with a board like this. For that, [David] suggests a few projects like boxing gloves that talk to each other, or tell you how much force you’re punching something with. Alternatively, you could read body movements and synchronize a LED light show to a dance performance. It can go further than that, though, because [David] built a mesh network logistics tracking system that uses an augmented reality interface. This was actually demoed at TechCrunch Disrupt NY, and the audience was wowed. You can check out the video of that demo here.

The Tiny, Pocket-Sized Robot Meant For Hacking

The world is full of educational robots for STEAM education, but we haven’t seen one as small or as cute as the Skoobot, an entry in this year’s Hackaday Prize. It’s barely bigger than an inch cubed, but it’s still packed with motors, a battery, sensors, and a microcontroller powerful enough to become a pocket-sized sumo robot.

The hardware inside each Skoobot is small, but powerful. The main microcontroller is a Nordic nRF52832, giving this robot an ARM Cortex-M4F brain and Bluetooth. The sensors include a VL6180X time of flight sensor that has a range of about 100mm. Skoobot also includes a light sensor for all your robotic photovoring needs. Other than that, the Skoobot is just about what you would expect, with a serial port, a buzzer, and some tiny wheels mounted in a plastic frame.

The idea behind the Skoobot is to bring robotics to the classroom, introducing kids to fighting/sumo robots, while still being small, cheap, and cute. To that end, the Skoobot is completely controllable via Bluetooth so anyone with a phone, a Pi, or any other hardware can make this robot move, turn, chase after light, or sync multiple Skoobots together for a choreographed dance.

While the Skoobot is an entry for this year’s Hackaday Prize, the creator of the Skoobot, [Bill Weiler] is also making these available on Crowd Supply.