Two hands on a book labeled "hardware crowdfunding"

Successfully Crowdfunded Hardware: Everything Behind The Scenes

Crowdfunding hardware has its own unique challenges, and [Uri Shaked] wrote a fascinating report that goes into excellent detail about his experience bringing a crowdfunded hardware project to life.

A skull-shaped PCB with two red eyes[Uri]’s project was The Skull CTF, an electronic hardware puzzle that came in the shape of a PCB skull, and his detailed look behind the scenes covers just about every angle, from original concept to final wrap-up, along with his thoughts and feedback at every stage. His project reached its funding goal, got manufactured and shipped, and in the end was a success.

[Uri] started with a working project, but beyond that was virtually a complete novice when it came to crowdfunding. He eventually settled on using Crowd Supply to make his idea happen, and his writeup explains in great detail every stage of that process, including dollar amounts. What’s great to see is that not only does [Uri] explain the steps and decisions involved, but explains the research that went into each, and how he feels each of them ended up working out.

The entire thing is worth a read, but [Uri] summarizes the experience of crowdfunding a hardware project thus: an excellent way to test out the demand for an idea and bring a product into existence, but be aware that unless a project is a runaway success it probably won’t be much of an income generator at that stage. It was a great learning experience, but involved a lot of time and effort on his part as well.

[Uri] really knows his stuff, and considering his skill at hunting down pesky bugs, it’s probably no surprise that this wasn’t his first hardware puzzle.

One Man’s Quest To Build A Baby Book With Brains

Regular readers will know that Hackaday generally steers clear of active crowdfunding campaigns. But occasionally we do run across a project that’s unique enough that we feel compelled to dust off our stamp of approval. Especially if the campaign has already blasted past its funding goal, and we don’t have to feel bad about getting you fine folks excited over vaporware.

It’s with these caveats in mind that we present to you Computer Engineering for Babies, by [Chase Roberts]. The product of five years of research and development, this board book utilizes an internal microcontroller to help illustrate the functions of boolean logic operations like AND, OR, and XOR in an engaging way. Intended for toddlers but suitable for curious minds of all ages, the book has already surpassed 500% of its funding goal on Kickstarter at the time of this writing with no signs of slowing down.

The electronics as seen from the rear of the book.

Technical details are light on the Kickstarter page to keep things simple, but [Chase] was happy to talk specifics when we reached out to him. He explained that the original plan was to use discreet components, with early prototypes simply routing the button through the gates specified on the given page. This worked, but wasn’t quite as robust a solution as he’d like. So eventually the decision was made to move the book over to the low-power ATmega328PB microcontroller and leverage the MiniCore project so the books could be programmed with the Arduino IDE.

Obviously battery life was a major concern with the project, as a book that would go dead after sitting on the shelf for a couple weeks simply wouldn’t do. To that end, [Chase] says his code makes extensive use of the Arduino LowPower library. Essentially the firmware wakes up the ATmega every 15 ms to see if a button has been pressed or the page turned, and updates the LED state accordingly. If no changes have been observed after roughly two minutes, the chip will go into a deep sleep and won’t wake up again until an interrupt has been fired by the yellow button being pressed. He says there are some edge cases where this setup might misbehave, but in general, the book should be able to run for about a year on a coin cell.

[Chase] tells us the biggest problem was finding a reliable way to determine which page the book was currently turned to. In fact, he expects to keep tinkering with this aspect of the design until the books actually ship. The current solution uses five phototransistors attached to the the MCU’s ADC pins, which receive progressively more light as fewer pages are laying on top of them. The first sensor is exposed when the second page of the book is opened, so for example, if three of the sensors are seeing elevated light levels the code would assume the user is on page four.

Opening to the last page exposes all five light sensors.

The books and PCBs are being manufactured separately, since as you might expect, finding a single company that had experience with both proved difficult. [Chase] plans on doing the final assembly and programming of each copy in-house with the help of family members; given how many have already been sold this early in the campaign, we hope he’s got a lot of cousins.

So what do you do with an Arduino-compatible book when Junior gets tired of it? That’s what we’re particularly interested in finding out. [Chase] says he’s open to releasing the firmware as an open source project after the dust settles from the Kickstarter campaign, which would give owners a base to build from should they want to roll their own custom firmware. Obviously the peripheral hardware of the book is fairly limited, but nothing is stopping you from hanging some sensors on the I2C bus or hijacking the unused GPIO pins.

If you end up teaching your copy of Computer Engineering for Babies some new tricks, we’ve love to hear about it.

Continue reading “One Man’s Quest To Build A Baby Book With Brains”

Indian Makers Respond To The COVID-19 Pandemic By Producing Oxygen Concentrators

We’ve all spent the last year or more under the shadow of the COVID-19 pandemic, and though some of us may have been vaccinated or come through its various waves it remains far from over. One of the hardest-hit parts of the world at the moment is in India, where health services are struggling to maintain adequate oxygen supply such is the demand for it from sick patients.

India’s hacker and maker community have risen to the challenge and done their bit to supply needed resources, and fresh from last year’s PPE manufacturing efforts a group from the Makers Asylum hackerspace in Goa have launched upon a fresh challenge. They aim to start producing the established open-source OxiKit oxygen concentrator in the Indian hackerspace community using locally manufactured parts, and they’ve launched a crowdfunding effort to cover their development, prototyping, and certification work.

The oxygen concentrator project builds on Makers Asylum’s experience last year as part of an extremely successful network of makerspaces producing PPE, which demonstrates that they have the resources, logistics, and ability to take on a project of this size. The OxiKit is no hare-brained contraption but an established and successful design that is already at work, so we believe that this project has a good chance of success. It’s close to home for Hackaday too, and one of the people involved with it is our colleague [Anool Mahidharia].

In a global pandemic only a global response can overcome the incredible challenges before us. For that reason we’d like to urge you to take a look at the Makers Asylum page wherever you are, and if you can, support it.

Continue reading “Indian Makers Respond To The COVID-19 Pandemic By Producing Oxygen Concentrators”

XChange Promises Inexpensive Tool Changes For 3D Printers

[Teaching Tech] has been interested in adding a tool changer to his 3D printer. E3D offers a system that allows you to switch print heads or even change out a hot end for a laser or a (probably) light-duty CNC head. The price of the entire device, though, is about $2,500, which put him off. But now he’s excited about a product from PrinterMods called XChange. This is a kit that will allow rapid tool changes on many existing printers and costs quite a bit less. Preorder on KickStarter is about $150, but that probably won’t be the final price.

Not all printers are compatible. It appears the unit attaches to printers that have linear rails and there is an adapter for printers that have V rollers in extrusions. Supposedly, there is an adapter in the works for printers that use rods and bearings.

Continue reading “XChange Promises Inexpensive Tool Changes For 3D Printers”

Vizy The AI Camera Aims To Ease Machine Vision

Cameras are getting smarter and more capable than ever, able to run embedded machine vision algorithms and pull off tricks far beyond what something like a serial camera and microcontroller board would be capable of, and the upcoming Vizy aims to be even smarter and easier to use yet. Vizy is the work of Charmed Labs, and this isn’t their first foray into accessible machine vision. Charmed Labs are the same folks behind the Pixy and Pixy 2 cameras. Vizy’s main goal is to make object detection and classification easy, with thoughtful hardware features and a browser-based interface.

Vizy can identify common birds with “Birdfeeder”, one of the several built-in applications that uses local processing only.

The usual way to do machine vision is to get a USB camera and run something like OpenCV on a desktop machine to handle the processing. But Vizy leverages a Raspberry Pi 4 to provide a tightly-integrated unit in a small package with a variety of ready-to-run applications. For example, the “Birdfeeder” application comes ready to take snapshots of and identify common species of bird, while also identifying party-crashers like squirrels.

The demonstration video on their page shows off using the built-in high-current I/O header to control a sprinkler, repelling non-bird intruders with a splash of water while uploading pictures and video clips. The hardware design also looks well thought out; not only is there a safe shutdown and low-power mode for the Raspberry Pi-based hardware, but the lens can be swapped and the camera unit itself even contains an electrically-switched IR filter.

Vizy has a Kickstarter campaign planned, but like many others, Charmed Labs is still adjusting to the changes the COVID-19 pandemic has brought. You can sign up to be notified when Vizy launches; we know we’ll be keen for a closer look once it does. Easier machine vision is always a good thing, because it helps free people to focus on clever ideas like machine vision-based tool alignment.

Help Save The National Videogame Museum

The National Videogame Museum in Sheffield, UK, houses a unique collection celebrating all decades of video games and their culture, and as the lockdown has brought with it a crisis threatening its very existence, has launched a crowdfunding campaign with a video we’ve placed below the break. As a relatively young organisation, they have yet to build up the financial buffer that a more established one would have. It’s important that this and other heritage sites live to open again another day, so we’d urge you to take a look.

On their website they’re providing a page of activities for the bored youngster in your life, but to whet your appetite should you wish to visit them in the future they also have a selection of pages about the rest of their exhibition.

One of the sad features of living through  a pandemic comes in knowing that some of the businesses and organisations we hold dear might not make it through the crisis. We’ve put in a few orders to smaller suppliers over the last week or two to shove a bit of extra business their way, and no doubt you have too. What is not so easy however, is when the threatened organisation is a visitor attraction; we can’t make the trip during a lockdown. The NVM is unlikely to be the only such attraction facing the pinch, so we’d urge you to look out for those that are close to you as well.

Continue reading “Help Save The National Videogame Museum”

ESPcopter: A Fully Customizable Drone

With so many capabilities for obstacle avoidance, the only natural progression for drones would be for them to be hand-controlled. For Turkish inventor [metehanemlik], even this wasn’t enough of a challenge, as he decided to create the ESP8266-Powered Mini Drone: ESPcopter, a programmable Arduino-compatible modular drone that is open to modding through expansion shields. Not only can DIY enthusiasts modify the algorithms used for obstacle avoidance, but the drone can be sized to whatever dimensions fit their needs.

The drone is almost entirely built from expansion shields, including the multi-ranger shield with four VL53L0x laser-ranging sensors on the forward, backward, right, and left directions of the drone. The website for the ESPcopter comes with an SDK that lets users easily modify the software running on the drone’s MCU as well as pinouts to better understand its hardware functionality. Impressively, it was fully funded through a 60-day crowdfunding campaign, and will be undergoing a second launch shortly, with some new and improved features.

Power comes from a 26 0mAh LiPo battery that allows for up to six minutes of flight time; includes a 3-axis gyroscope, accelerometer, and magnetometer; runs on an ESP8266-12S 32-bit MCU; fully charges within 45 minutes through a USB connection; weighs around 35 g; and is about 90 mm from motor to motor. Continue reading “ESPcopter: A Fully Customizable Drone”