I Hear You Offer WiFi

We are swimming in radio transmissions from all around, and if you live above the ground floor, they are coming at you from below as well. Humans do not have a sensory organ for recognizing radio signals, but we have lots of hardware which can make sense of it. The chances are good that you are looking at one such device right now. [Frank Swain] has leaped from merely accepting the omnipresent signals from WiFi routers and portable devices to listening in on them. The audio signals are mere soundwaves, so he is not listening to every tweet and email password, merely a representation of the data’s presence. There is a sample below the break, and it sounds like a Geiger counter playing PIN•BOT.

We experience only the most minuscule sliver of information coming at us at any given moment. Machines to hack that gap are not had to find on these pages so [Frank] is in good company. Magnetosensory is a popular choice for people with a poor sense of direction. Echolocation is perfect for fans of Daredevil. Delivering new sensations could be easier than ever with high-resolution tactile displays. Detect some rather intimate data with ‘SHE BON.’

Continue reading “I Hear You Offer WiFi”

Turn Yourself Into A Cyborg With Neural Nets

If smartwatches and tiny Bluetooth earbuds are any indications, the future is with wearable electronics. This brings up a problem: developing wearable electronics isn’t as simple as building a device that’s meant to sit on a shelf. No, wearable electronics move, they stretch, people jump, kick, punch, and sweat. If you’re prototyping wearable electronics, it might be a good idea to build a Smart Internet of Things Wearable development board. That’s exactly what [Dave] did for his Hackaday Prize entry, and it’s really, really fantastic.

[Dave]’s BodiHub is an outgrowth of his entry into last year’s Hackaday Prize. While the project might not look like much, that’s kind of the point; [Dave]’s previous projects involved shrinking thousands of dollars worth of equipment down to a tiny board that can read muscle signals. This project takes that idea a bit further by creating a board that’s wearable, has support for battery charging, and makes prototyping with wearable electronics easy.

You might be asking what you can do with a board like this. For that, [David] suggests a few projects like boxing gloves that talk to each other, or tell you how much force you’re punching something with. Alternatively, you could read body movements and synchronize a LED light show to a dance performance. It can go further than that, though, because [David] built a mesh network logistics tracking system that uses an augmented reality interface. This was actually demoed at TechCrunch Disrupt NY, and the audience was wowed. You can check out the video of that demo here.

Ask Hackaday: What Is The Future Of Implanted Electronics?

Biohacking is the new frontier. In just a few years, millions of people will have implanted RFID chips under the skin between their thumb and index finger. Already, thousands of people in Sweden have chipped themselves to make their daily lives easier. With a tiny electronic implant, Swedish rail passengers can pay their train ticket, and it goes without saying how convenient opening an RFID lock is without having to pull out your wallet.

That said, embedding RFID chips under the skin has been around for decades; my thirteen-year-old cat has had a chip since he was a kitten. Despite being around for a very, very long time, modern-day cyborgs are rare. The fact that only thousands of people are using chips on a train is a newsworthy event. There simply aren’t many people who would find the convenience of opening locks with a wave of a hand worth the effort of getting chipped.

Why hasn’t the most popular example of biohacking caught on? Why aren’t more people getting chipped? Is it because no one wants to be branded with the Mark of the Beast? Are the reasons for a dearth of biohacking more subtle? That’s what we’re here to find out, so we’re asking you: what is the future of implanted electronics?

Continue reading “Ask Hackaday: What Is The Future Of Implanted Electronics?”

Friday Hack Chat: Becoming Cyborg

What is it like to be a cyborg? What does it mean to have augmented hearing, improved vision, and coprocessors for your brain that enhance your memory? We could ask people with hearing aids, glasses, and a smartphone strapped to their wrist, but that’s boring. We’re looking to the future and the cool type of cyborgation, and that’s what this week’s Hack Chat is all about.

Our guest for this week’s Hack Chat will be Lindy Wilkins, and they’re here to discuss what it takes to be a cyborg. Right now, they’re sporting a magnetic implant, an NFC implant and will soon have a North Sense, an exo-sensory device that tells your brain where North is.

Lindy is currently based in Toronto as a PhD student at the University of Toronto, and director at the Site 3 coLaboratory. They spend free time making robots, playing with lasers, and thinking about how body modification and where the intersection of bio-hacking and wearable technology will meet in the near future.

During this Hack Chat, we’re going to be talking about what it means to be a cyborg. Is it simply a matter of wearing contacts, getting a replacement hip or heart valve, or is it something even cooler? Do RFID tags count? Do insulin pumps? We’re going to be digging deep into what it means to be a cyborg, and what future technologies will enable the human body to do. You are, of course, encouraged to ask your own questions; leave those on the Hack Chat event page.

join-hack-chat

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This Hack Chat is going down Friday, January 26th at noon, Pacific time. Time Zones got you down? Here’s a handy countdown timer!

Click that speech bubble to the left, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Need A Hand? How About Two?

A helping hand goes a long way to accomplishing a task. Sometimes that comes in the form of a friend, and sometimes it’s a pair of robotic hands attached to your arm.

Italian startup [Youbionic] have developed this pair of 3D printed hands which aim to extend the user’s multi-tasking capacity. Strapped to the forearm and extending past the user’s natural hand, they are individually operated by flexing either the index or ring fingers. This motion is picked up by a pair of flex sensor strips — a sharp movement will close the fist, while a slower shift will close it halfway.

At present, the hands are limited in their use — they are fixed to the mounting plate and so are restricted to gripping tasks, but with a bit of practice could end up being quite handy. Check out the video of them in action after the break!

Continue reading “Need A Hand? How About Two?”

Magnet Implants, Your Cyborg Primer

What would you do to gain a sixth sense? Some of us would submit to a minor surgical procedure where a magnet is implanted under the skin. While this isn’t the first time magnet implants have been mentioned here on Hackaday, [The Thought Emporium] did a phenomenal job of gathering the scattered data from blogs, forum posts, and personal experimentation into a short video which can be seen after the break.

As [The Thought Emporium] explains in more eloquent detail, a magnet under the skin allows the implantee to gain a permanent sense of strong magnetic fields. Implantation in a fingertip is most common because nerve density is high and probing is possible. Ear implants are the next most useful because oscillating magnetic fields can be translated to sound.

For some, this is merely a parlor trick. Lifting paper clips and messing with a compass are great fun. Can magnet implants be more than whimsical baubles?

Continue reading “Magnet Implants, Your Cyborg Primer”

Recording Functioning Muscles to Rehab Spinal Cord Injury Patients

[Diego Marino] and his colleagues at the Politecnico di Torino (Polytechnic University of Turin, Italy) designed a prototype that allows for patients with motor deficits, such as spinal cord injury (SCI), to do rehabilitation via Functional Electrical Stimulation. They devised a system that records and interprets muscle signals from the physiotherapist and then stimulates specific muscles, in the patient, via an electro-stimulator.

The acquisition system is based on a BITalino board that records the Surface Electromyography (sEMG) signal from the muscles of the physiotherapist, while they perform a specific exercise designed for the patient’s rehabilitation plan. The BITalino uses Bluetooth to send the data to a PC where the data is properly crunched in Matlab in order to recognize and to isolate the muscular activity patterns.

After that, the signals are ‘replayed’ on the patient using a relay-board connected to a Globus Genesy 600 electro-stimulator. This relay board hack is mostly because the Globus Genesy is not programmable so this was a fast way for them to implement the stimulator. In their video we can see the muscle activation being replayed immediately after the ‘physiotherapist’ performs the movement. It’s clearly a prototype but it does show promising results.

Continue reading “Recording Functioning Muscles to Rehab Spinal Cord Injury Patients”