Lessons Learned, When Restoring An Amiga 1000

In the mid 1980s, there was a rash of 16-bit computers entering the market. One of them stood head and shoulders above the rest: Commodore’s Amiga 1000. It had everything that could reasonably be stuffed into a machine of the period, and multimedia capabilities the rest wouldn’t catch up on for years. [Celso Martinho] has managed to secure one of those first machines, and has shared his tale of bringing it back to life.

The post is as much a love letter to the Amiga and review of A1000 peripherals as it is a restoration, which makes it a good read for retrocomputing enthusiasts.  He recapped it and it wouldn’t boot, the solution of which turned out to be a reminder for the rest of us.

The machine had a RAM upgrade in the form of a daughterboard under the processor, its pins had weakened the leaves of the processor socket so it wouldn’t make contact. So don’t forget to replace sockets as well as capacitors.

The resulting machine is much faster thanks to a modern upgrade with a much quicker processor, memory, and an SD card for storage. He goes into some of the other upgrades available today, all of which would have had early-1990s-us salivating. It’s fair to say that in 2025 an A1000 is more 40-year-old curio than useful modern computer, but we can’t fail to admit to a bit of envy. The Amiga holds a special affection, here.

Paper Tape – With LASERs!

Though it is many decades since paper tape was commonly used as a data input or storage medium, it still holds a fascination for many who work with computers. Over the years we’ve featured more than one paper tape related project, and the latest to come out way is [ColemanJW2]’s 8-bit ASCII paper tape generator.

It’s natural to expect when talking about a paper tape generator that a machine of some type will emerge, probably with a large reel of tape, a whirring mechanical punch, and a big box of paper confetti. This one however is different, because it exists in software and produces an SVG file to cut the tape with a laser cutter. Common workshop equipment in 2025, but the stuff of science fiction when paper tape was current.

The software is a Python script, which has a friendly GUI. It applies 8-bit ASCII to the tape, and supports control codes and ANSI escape sequences. There’s a very short demonstration video of a tape being cut, which we’ve placed below the break.

If you make any tapes this way, see if you can find a paper tape event badge to read them.

Continue reading “Paper Tape – With LASERs!”

Film Capacitors Can Go In The Wrong Way Round? Who Knew!

You can work with a part for many decades, and still learn something new about it. At least we can, and we don’t mind admitting it. Take film capacitors — we all know they aren’t a polarized part like an electrolytic capacitor is, but as [TheDannVal] points out, that doesn’t mean both their leads are the same.

This might sound counterintuitive, but if you consider for a moment their construction it makes sense. A film capacitor is made from two strips of foil with a strip of plastic film between then, rolled up tightly into a cylinder. One of the pieces of foil that forms one side of the capacitor ends up on the outside of the cylinder, and thus forms the shield for the other. Thus if that side isn’t connected to the lower impedance side of whichever circuitry it resides in, it can pick up noise, while the inside strip of foil can not. It’s so obvious when demonstrated, but we have to admit to never having considered it before. Some film capacitors have a line marked on them to denote the connection forming the shield, for those that don’t he provides a couple of methods for detecting it.

The full video is below the break, and maybe you too can now pay attention to your capacitors for lower noise audio circuitry.

Continue reading “Film Capacitors Can Go In The Wrong Way Round? Who Knew!”

A Low Voltage Solder Gun From Scratch

We’re used to those high voltage projects which use a self-oscillating transformer circuit with a TV flyback winding, and we have even at times railed against them for their inefficiency compared to a real flyback circuit using the same parts. But what happens if the same idea is used to create a low voltage instead of a high one? [D. Creative] has a soldering gun project doing just this, making a low voltage at a very high current.

The video of the project is below the break, and while electrically it’s nothing unexpected, we’re taken by the quality of the build. All the parts come from scrap electronics, the main transformer is three ferrite cores with a piece of copper busbar as the secondary. The circuitry is built dead bug style, and it’s housed in a gun-style case made by hand from sheet Perspex. It takes 12 volt power from a laptop power supply, and feeds it to the oscillator which is perched up at the back of the device. The transformer fits in the “barrel”, and a pair of large capacitors fit in the handle. We expect it to get hot, but the duty cycle on these devices in use is probably low enough to keep it from melting.

We like anything that uses scrap parts to make something useful, and we’re particularly taken with the casing of this one. It looks as though the parts come from old switch mode power supplies, something we’ve been known to rob ourselves.

Continue reading “A Low Voltage Solder Gun From Scratch”

The FTC Take Action, Is Time Finally Up For John Deere On Right To Repair?

Over the last decade we have brought you frequent reports not from the coolest of hackerspaces or the most bleeding edge of engineering in California or China, but from the rolling prairies of the American Midwest. Those endless fields of cropland waving in the breeze have been the theatre for an unlikely battle over right to repair, the result of which should affect us all. The case of FEDERAL TRADE COMMISSION, STATE OF ILLINOIS, and STATE OF MINNESOTA, v. DEERE & COMPANY  relates to the machinery manufacturer’s use of DRM to restrict the repair of its products, and holds the promise to end the practice once and for all.

This is being written in Europe, where were an average person asked to name a brand that says “America”, they might reach for the familiar; perhaps Disney, McDonalds, or Coca-Cola. These are the flag-bearers of American culture for outsiders, but it’s fair to say that none of them can claim to have built the country. The green and yellow Deere tractors on the other hand represent the current face of a company with nearly two hundred years of farming history, which by virtue of producing some of the first mass-produced plows, had perhaps the greatest individual role in shaping modern American agriculture and thus indirectly the country itself. To say that Deere is woven into the culture of rural America is something of an understatement, agricultural brands like Deere have an enviable customer base, the most loyal of any industry.

Thus while those green and yellow tractors are far from the only case of DRM protected repairability, they have become the symbolic poster child for the issue as a whole. It’s important to understand then how far-reaching it is beyond the concerns of us technology and open-source enthusiasts, and into something much more fundamental. Continue reading “The FTC Take Action, Is Time Finally Up For John Deere On Right To Repair?”

Making A Mini AM Transmitter Better

The chances are that many of you will have made an FM “bug” style transmitter, a simple one-transistor oscillator usually driven by a small electret microphone. It’s also relatively straightforward to do the same for AM, and if you take a look through AliExpress you’ll find some modules which do just that. [Doz Television Workshop] has one, and he’s treated us to a thorough run-down of its design before addressing some of its shortcomings.

An AM transmitter is simple enough, in this case an oscillator and buffer driving a class C power amplifier. The modulation is applied by a transistor in series with the power amp, driven from an audio amplifier. Some attention has gone into the design of this one, with a proper output filter and plenty of room for tweaking to achieve proper levels and modulation density. There are some problems though — The modulator transistor is mounted upside down for the heatsink, and the frequency stability leaves something to be desired. [Doz] fixes the heatsink mounting and incorporates a DDS frequency synthesizer with an Arduino for control.

More after the break…

Continue reading “Making A Mini AM Transmitter Better”

The ESP32-C5, Finally Espressif Goes Dual-Band

The ESP32 series of microcontrollers have been with us for quite a few years now, providing a powerful processor and wireless connectivity for not a huge outlay. We’ve seen a bunch of versions over the years with both Tensilica and RISC-V cores, but so far the ones with radios have all only serviced 2.4 GHz WiFi. That’s about to change to include 5GHz with the new C5 variant though, and [Andreas Spiess] has been lucky enough to get his hands on a prototype dev kit

It’s very similar to the C6, which we’re already used to beyond the dual-band 2.4GHz and 5GHz radio from a software point of view. The C5 is so new that the company has yet to incorporate the new chip into the Arduino IDE. He shows it working and detecting both networks though, and speculates a little about its eventual marketing.

Interesting to us is the dual-band antenna, with branches for both frequencies on the same PCB. We’d be interested to see the real-world performance of this, and also whether they produce a version with separate outputs for each band. The full video is below the break. In the meantime, watch out for this chip appearing on the market.

It’s not the only Espresif chip we’re anticipating at the moment.

Continue reading “The ESP32-C5, Finally Espressif Goes Dual-Band”