The two types of LED candle, side by side.

2025 Component Abuse Challenge: Heat Activated LED Candles

[Miroslav Hancar] wasn’t satisfied with abusing just a single component for our Component Abuse Challenge. He decided to abuse a whole assembly, in particular, some LED candles.

In this project, LEDs are abused as temperature sensors. When the temperature gets hot enough for long enough, the microcontroller will turn on its LEDs. How? A diode’s forward voltage is temperature-related. By monitoring the forward voltage, the microcontroller can infer the temperature and respond appropriately.

This particular project is really two projects in one, centered around a common theme, heat activation. The first version has four LEDs and, in response to heat, four LEDs flicker to simulate a real candle. The second version is also heat-activated, but it has only one LED. You can snuff out this LED by pinching the top of it with your fingers. You can see a demo of each version in the videos below.

Continue reading “2025 Component Abuse Challenge: Heat Activated LED Candles”

A photo of the transmitter and receiver.

Teardown Of HP Optical Link And Signal Investigations Using Siglent Technology

Anything with a laser has undeniable hacker appeal, even if the laser’s task is as pedestrian as sending data over a fiber optic cable. [Shahriar] from [The Signal Path] must agree, and you can watch as he tears down and investigates a fiber optic link made from old HP equipment in the video below.

He starts with an investigation of the block diagram of the transmitter. In the transmitter, the indium gallium arsenide phosphide laser diode emits light with a 1310-nanometer wavelength. Thermal characteristics in the transmitter are important, so there is thermal control circuitry. He notes that this system only works using amplitude modulation; phase modulation would require more expensive parts. Then it’s time to look at the receiver’s block diagram. Some optics direct the light signal to a PIN diode, which receives the signal and interfaces with biasing and amplifying circuitry.

Continue reading “Teardown Of HP Optical Link And Signal Investigations Using Siglent Technology”

A photo of a hand holding the inductor coil

2025 Component Abuse Challenge: Using Inductors To Steal Power From Qi Wireless Charging Base Station

Over on Hackaday.IO our hacker [bornach] has his entry into the Component Abuse Challenge: Inductors are Wireless Power Sources.

Some time back [bornach] was gifted a Qi wireless charging base station but didn’t own any compatible devices. He had a dig around in his junk box for inductors to attempt coupling to the wireless charger and lucked out with an inductor salvaged from his old inkjet printer.

There are actually open standards, known as the Qi standards, for how to negotiate power from a Qi device. But [bornach] ignored all of that. Instead he leveraged the fact that the Qi base station will periodically send out a “ping” containing a small measure of power to let compatible devices know that it’s available for negotiation. It is the energy in this “ping” that power’s [bornach]’s circuit!

In [bornach]’s circuit a TL431 provides a regulated five volt supply which can be used to drive a microcontroller and a charliplexed array of ten LEDs. Pretty nifty stuff. If you’re new to wireless charging you might like to know How Wireless Charging Works And Why It’s Terrible. Continue reading “2025 Component Abuse Challenge: Using Inductors To Steal Power From Qi Wireless Charging Base Station”

I/V plot at various voltage levels

2025 Component Abuse Challenge: Reverse Biasing An NPN BJT

For the Component Abuse Challenge our hacker [Tim Williams] observes that N-P-N reads the same way forwards and backwards, so… what happens if we reverse bias one? (Note: this remark about N-P-N reading the same forward and backward is a lighthearted joke; in fact the level of doping in the emitter and collector is different so those Ns are not fungible and will exhibit different properties and have different characteristics.)

What happens if we reverse bias an NPN transistor?In the margin you can see how the question was originally posed by Bob Pease back in March 18, 1996.

In his article [Tim] mentions that some transistors are specifically designed to operate when reverse biased, which [Tim] calls “inverted mode”, whereas most transistors are not designed to work in this fashion and that’s the sort of abuse that could damage the component and lead it to malfunction.

But what is Vout? [Tim] reports that he measured approximately -0.4 volts using his high-impedance meter. We tried this experiment in the lab ourselves but we were not able to duplicate [Tim]’s result; however there is a long list of potential reasons for such an outcome. If you do this experiment yourself we would love to hear about your results in the comments section!

If you’re still learning about transistors you might like to check out our five part series on transistors as amplifiers, starting here: Won’t Somebody, Please, Think Of The Transistors!

Thanks to [Tim] for his submission, we wish him the best of luck in the competition!

Schematic diagram of part of RAM

Making RAM For A TMS9900 Homebrew Computer

Over on YouTube [Usagi Electric] shows us how to make RAM for the TMS9900.

He starts by remarking that the TI-99/4A computer is an excellent place to start if you’re interested in getting into retro-computing. Particularly there are a lot of great resources online, including arcadeshopper.com and the AtariAge forums.

The CPU in the TI-99 is the TMS9900. As [Usagi Electric] explains in the video this CPU only has a few registers and most actual “registers” are actually locations in RAM. Because of this you can’t do much with a TMS9900 without RAM attached. So he sets about making some RAM for his homebrew TMS9900 board. He uses Mitsubishi M58725P 16 kilobit (2 kilobyte) static RAM integrated circuits; each has 11 address lines and 8 data lines, so by putting two side-by-side we get support for 16-bit words. Using six M58725Ps, in three pairs, we get 6 kilowords (12 kilobytes).

Continue reading “Making RAM For A TMS9900 Homebrew Computer”

A photo of the MMD-1 on the workbench.

Restoring The E&L MMD-1 Mini-Micro Designer Single-Board Computer From 1977

Over on YouTube [CuriousMarc] and [TubeTimeUS] team up for a multi-part series E&L MMD-1 Mini-Micro Designer Restoration.

The E&L MMD-1 is a microcomputer trainer and breadboard for the Intel 8080. It’s the first ever single-board computer. What’s more, they mention in the video that E&L actually invented the breadboard with the middle trench for the ICs which is so familiar to us today; their US patent 228,136 was issued in August 1973.

The MMD-1 trainer has support circuits providing control logic, clock, bus drivers, voltage regulator, memory decoder, memory, I/O decoder, keyboard encoder, three 8-bit ports, an octal keyboard, and other support interconnects. They discuss in the video the Intel 1702 which is widely accepted as the first commercially available EPROM, dating back to 1971.

Continue reading “Restoring The E&L MMD-1 Mini-Micro Designer Single-Board Computer From 1977”

The winning entry, a photo of a fly on a grain of rice.

Nikon Small World Competition Announces 2025 Winners

They say that, sometimes, less is more. That would certainly apply to photomicrography, where you want to take pictures of tiny things. Nikon agrees, and they sponsor the Small World contest every year. The 2025 winners are a big — or not so big, maybe — deal.

This photomicrography competition dates back to 1975, so this is the 51st set of winners. First place went to [Zhang You] for his photograph of a rice weevil (sitophilus oryzae) on a grain of rice.

[You] is an entomologist from the Entomological Society of China. He says, “It pays to dive deep into entomology: understanding insects’ behaviors and mastering lighting, a standout work blends artistry with scientific rigor, capturing the very essence, energy, and spirit of these creatures.” We can’t argue with the results.

If you’re interested in Nikon and photography, you might also be interested in repairing a broken lens or a Nikon D3.