Back to the Future Lunchbox Cyberdeck

Back To The Future Lunchbox Cyberdeck

Our hacker [Valve Child] wrote in to let us know about his Back to the Future lunchbox cyberdeck.

Great Scott! This is so awesome. We’re not sure what we should say, or where we should begin. A lot of you wouldn’t have been there, on July 3rd, 1985, nearly forty years ago. But we were there. Oh yes, we were there. On that day the movie Back to the Future was released, along with the hit song from its soundtrack: Huey Lewis & The News – The Power Of Love.

Continue reading Back To The Future Lunchbox Cyberdeck”

Origami assembly line.

Building An Assembly Line For Origami Pigeons

When it comes to hacks, the best ones go to extremes. Either beautiful in their simplicity, or magnificent in their excess. And, well, today’s hack is the latter: excessive. [HTX Studio] built an assembly line for origami pigeons!

One can imagine the planning process went something like this:

  1. Make origami pigeon assembly line
  2. ?
  3. Profit

But whatever the motivation, this is an impressive and obviously very well engineered machine. Even the lighting is well considered. It’s almost as if it were made for show…

Now, any self-respecting nerd should know the difference between throughput and latency. From what we could glean from the video, the latency through this assembly line is in the order of 50 seconds. Conservatively it could probably have say 5 birds in progress at a time. So let’s say every 10 seconds we have one origami pigeon off the assembly line. This is a machine and not a person so it can operate twenty four hours a day, save downtime for repairs and maintenance, call it 20 hours per day. We could probably expect more than 7,000 paper pigeons out of this machine every day. Let’s hope they’ve got a buyer lined up for all these birds.

If you’re interested in assembly lines maybe we could interest you in a 6DOF robotic arm, or if the origami is what caught your eye, check out the illuminating, tubular, or self-folding kind!

Continue reading “Building An Assembly Line For Origami Pigeons”

A Close Look At The Mitxela Precision Clock Mk IV

Over on his secondary YouTube channel, [Jeff Geerling] recently demoed the new Mitxela Precision Clock Mk IV.

This clock uses GPS to get the current time, but also your location so it can figure out what time zone you’re in and which daylight savings time might apply. On the back a blinking diode announces the arrival of each second. A temperature-compensated crystal oscillator (TCXO) is employed for accurate time-keeping.

The clock can be folded in half, thereby doubling as a clapperboard for movie makers. The dimming system is analog, not pulse width modulation (PWM), which means no visible flashing artifacts when recording. It is highly configurable and has USB connectivity. And it has not one but two ARM microcontrollers, an ARM STM32L476, and an ARM STM32L010. If you’re interested, you can pick one up for yourself from [Mitxela]’s shop.

Toward the end of his video [Jeff] does some navel gazing, thinking about what might be required if future versions of the clock wanted to get down into precision at the nanosecond level. Do you arrange it so the light arrives at the viewer’s eyeball at the right time? Or do you update it on the clock at the right time and let the viewer know about it after a minuscule delay? Philosophical preponderances for another day!

We should add that we’ve seen plenty of cool stuff from [Mitxela] before, including the Euroknob and these soldering tweezers.

Continue reading “A Close Look At The Mitxela Precision Clock Mk IV”

ChatGPT Patched A BIOS Binary, And It Worked

[devicemodder] wrote in to let us know they managed to install Linux Mint on their FRP-locked Panasonic Toughpad FZ-A2.

Android devices such as the FZ-A2 can be locked with Factory Reset Protection (FRP). The FRP limits what you can do with a device, tying it to a user account. On the surface that’s a good thing for consumers as it disincentivizes stealing. Unfortunately, when combined with SecureBoot, it also means you can’t just install whatever software you want on your hardware. [devicemodder] managed to get Linux Mint running on their FZ-A2, which is a notable achievement by itself, but even more remarkable is how it was done.

So how did [devicemodder] get around this limitation? The first step was to dump the BIOS using a CH341A-based programmer. From there, the image was uploaded to ChatGPT along with a request to disable SecureBoot. The resulting file was flashed back onto the FZ-A2, and all available fingers were crossed.

And… it worked! ChatGPT modified the BIOS enough that the Linux Mint installer could be booted from a flash drive. There are a bunch of bugs and issues to work through but in principle we have just seen AI capable enough to successfully patch a binary dump of BIOS code, which, for the record, is kind of hard to do. We’re not sure what all of this might portend.

So is uploading binaries to ChatGPT with requests for mods vibe coding? Or should we invent a new term for this type of hack?

The bill of materials and the assembled smartwatch.

Piko, Your ESP32 Powered Fitness Buddy

Over on Hackaday.io there’s a fun and playful write-up for a fun and playful project — the Piko, an ESP32 powered smartwatch.

Our hackers [Iloke Alusala], [Lulama Lingela], and [Rafael Cardoso] teamed up to design and manufacture this wrist-worn fitness wearable. Made from an ESP32 Beetle C6 and using an attached accelerometer with simple thresholds the Piko can detect if you’re idle, walking, jogging, or sprinting; and at the same time count your steps.

Design sketches

The team 3D printed the requisite parts in PLA using the printer in their university makerspace. In addition to the ESP32 and printed parts, the bill of materials includes a 240×240 IPS TFT LCD display, a LIS331HH triple-axis accelerometer, a 200 mAh battery, and of course, a watch strap.

Demonstrating splendid attention to detail, and inspired by the aesthetic of the Tamagotchi and pixel art, the Piko mimics your current activity with a delightful array of hand-drawn animations on its display. Should you want to bring a similar charm to your own projects, all the source is available under the MIT license.

If you’re interested in smartwatch technology be sure to check out our recent articles: Smartwatches Could Flatten The Curve Of The Next Pandemic and Custom Smartwatch Makes Diabetes Monitoring Easier For Kids.

Continue reading “Piko, Your ESP32 Powered Fitness Buddy”

A Lego vehicle crossing a gap between two benches.

Making A LEGO Vehicle Which Can Cross Large Gaps

Here is a hacker showing off their engineering chops. This video shows successive design iterations for a LEGO vehicle which can cross increasingly large gaps.

At the time of writing this video from [Brick Experiment Channel] has been seen more than 110,000,000 times, which is… rather a lot. We guess with a view count like that there is a fairly good chance that many of our readers have already seen this video, but this is the sort of video one could happily watch twice.

Continue reading “Making A LEGO Vehicle Which Can Cross Large Gaps”

ManiPylator focusing its laser pointer at a page.

Simulation And Motion Planning For 6DOF Robotic Arm

[Leo Goldstien] recently got in touch to let us know about a fascinating update he posted on the Hackaday.io page for ManiPylator — his 3D printed Six degrees of freedom, or 6DOF robotic arm.

This latest installment gives us a glimpse at what’s involved for command and control of such a device, as what goes into simulation and testing. Much of the requisite mathematics is introduced, along with a long list of links to further reading. The whole solution is based entirely on free and open source (FOSS) software, in fact a giant stack of such software including planning and simulation software on top of glue like MQTT message queues.

The practical exercise for this installment was to have the arm trace out the shape of a heart, given as a mathematical equation expressed in Python code, and it fared quite well. Measurements were taken! Science was done!

We last brought you word about this project in October of 2024. Since then, the project name has changed from “ManiPilator” to “ManiPylator”. Originally the name was a reference to the Raspberry Pi, but now the focus is on the Python programming language. But all the bot’s best friends just call him “Manny”.

If you want to get started with your own 6DOF robotic arm, [Leo] has traced out a path for you to follow. We’d love to hear about what you come up with!

Continue reading “Simulation And Motion Planning For 6DOF Robotic Arm”