Poking At The ESP32-P4 And -C6 Dies In An ESP32-P4-M3 Module

The RF section of the ESP32-C6 die. (Credit: electronupdate, YouTube)
The RF section of the ESP32-C6 die. (Credit: electronupdate, YouTube)

With the ESP32-P4 not having any wireless functionality and instead focusing on being a small SoC, it makes sense to combine it with a second chip that handles features like WiFi and Bluetooth. This makes the Guition ESP32-P4-M3 module both a pretty good example of how the P4 will be used, and an excellent opportunity to tear into, decap and shoot photos of the dies of both the P4 and the ESP32-C6 in this particular module, courtesy of [electronupdate]. There also the blog post for those who just want to ogle the shinies.

After popping the metal shield on the module, you can see the contents as in the above photo. The P4 inside is a variant with 32 MB of PSRAM integrated along with the SoC die. This results in a die shot both of this PSRAM and the P4 die, though enough of the top metal seems to remain to clearly see the latter.

The Boya brand Flash chip is quite standard inside, and along with a glance at the inside of one of the crystal oscillators we get to glance at the inside of the C6 MCU. This is a much more simple chip than the P4, with the RF section quite obvious. The total die sizes are 2.7 x 2.7 mm for the C6 and 4.29 x 3.66 mm for the P4.

Continue reading “Poking At The ESP32-P4 And -C6 Dies In An ESP32-P4-M3 Module”

Fixing A Destroyed XBox 360 Development Kit

As common as the Xbox 360 was, the development kits (XDKs) for these consoles are significantly less so. This makes it even more tragic when someone performs a botched surgery on one of these rare machines, leaving it in dire straits. Fortunately [Josh Davidson] was able to repair the XDK in question for a customer, although it entailed replacing the GPU, CPU and fixing many traces.

The Xbox 360 Development Kit is effectively a special version of the consumer console — with extra RAM and features that make debugging software on the unit much easier, such as through direct access to RAM contents. They come in a variety of hardware specifications that developed along with the game console during its lifecycle, with this particular XDK getting an upgrade to being a Super Devkit with fewer hardware restrictions.

Replacing the dead GPU was a new old stock Kronos 1 chip. Fortunately the pads were fine underneath the old GPU, making it easy to replace. After that various ripped-off pads and traces were discovered underneath the PCB, all of which had to be painstakingly repaired. Following this the CPU had apparently suffered heat damage and was replaced with a better CPU, putting this XDK back into service.

Continue reading “Fixing A Destroyed XBox 360 Development Kit”

Thermoforming Printed Parts With Hot Water

Thermoforming is the process of softening a material enough so that it can be tweaked into a new shape, with the source of the thermal energy being not particularly relevant. Correspondingly, after [Zion Brock]’s recent video on his journey into thermoforming PLA with a mold and a heat gun, he got many comments suggesting that he should use hot water instead.

We covered his previous video as well, in which he goes through the design steps of making these grilles for a retro-styled, 3D printed radio. The thermoforming method enables him to shape the curvy grille with a heat gun and two-piece mold in a matter of minutes, rather than spending hours more time printing and removing many supports.

Theoretically using hot water instead of hot air would provide a more equal application of heat, but putting your hands into 70°C water does require some more precautions. There’s also the issue that PLA is very hygroscopic, so the part requires drying afterwards to prevent accelerated hydrolysis. Due to the more even heating, the edge of the PLA that clamped into the mold also softened significantly, causing it to pop out of the mold and requiring a small design modification to prevent this.

Basically, aqua-thermoforming like this has many advantages, as its slower and more consistent, but it’s less straightforward to use than hot air. This makes both a useful tool when you’re looking at doing thermoforming.

Continue reading “Thermoforming Printed Parts With Hot Water”

Creating The World’s Most Efficient Quadcopter Drone

Keeping an eye on remaining battery charge. (credit: Luke Maximo Bell, YouTube)
Keeping an eye on remaining battery charge. (credit: Luke Maximo Bell, YouTube)

Although not a typical focus of people who fly quadcopter drones for a hobby or living, endurance flying has a certain appeal to it for the challenge it offers. Thus, as part of his efforts to collect all the world records pertaining to quadcopter drones, [Luke Maximo Bell] has been working on a design that would allow him to beat the record set by SiFly Aviation at 3 hours and 11 minutes.

By using knowledge gained from his PV solar-powered quadcopter, [Luke] set about to take it all a few steps further. The goal was to get as much performance out of a single Watt, which requires careful balancing of weight, power output and many other parameters.

Crucial is that power usage goes up drastically when you increase the RPM of the propellers, ergo massive 40″ propellers were picked to minimize the required RPM to achieve sufficient lift, necessitating a very large, but lightweight frame.

The battery packs are another major factor since they make up so much of the weight. By picking high-density Tattu batteries and stripping these down even more this was optimized for as well, before even the wire gauge of the power wires running to the motors were investigated to not waste a single Watt or gram.

All of this seems to have paid off, as a first serious test flight resulted in a 3 hour, 31 minutes result, making it quite feasible that [Luke] will succeed with his upcoming attempt at the world’s longest flying electric multirotor record. Another ace up his sleeve here is that of forward movement as well as wind provides effectively free lift, massively reducing power usage and possibly putting the 4 hour endurance score within easy reach.

Continue reading “Creating The World’s Most Efficient Quadcopter Drone”

The Dismal Repairability Of Milwaukee Tools

Despite the best efforts of the manufacturers, there are folks out there that try to repair power tools, with [Dean Doherty] being one of them. Recently he got a Milwaukee M18 cordless planer in for repairs, which started off with just replacing some dodgy bearings, but ended up with diagnosing a faulty controller. Consequently the total repair costs went up from reasonable to absolutely unreasonable, leading to a rant on why Milwaukee tools are terrible to repair.

Among the symptoms was the deep-discharged battery, which had just a hair over 7 V while unloaded. Question was what had drained the battery so severely. What was clear was that the tool was completely seized after inserting a working battery with just a sad high-pitched whine from a stalled motor.

After replacing both bearings and grumbling about cheap bearings, the tool had a lot of drywall dust cleaned out and was reassembled for a test run. This sadly showed that the controller board had been destroyed due to the seized rotor bearing, explaining the drained battery. Replacing the controller would have cost €60-70 as it comes with the entire handle assembly, rendering the repair non-viable and a waste.

Perhaps the one lesson from this story is that you may as well preventively swap the cheap bearings in your Milwaukee tools, to prevent seizing and taking out the controller board. That said, we’d love to see an autopsy on this controller board fault.

Continue reading “The Dismal Repairability Of Milwaukee Tools”

Using 3D Printed Breadboards To Accommodate Wide Boards

Although off-the-shelf breadboards are plentiful and cheap, they almost always seem to use the same basic design. Although you can clumsily reassemble most of them by removing the voltage rail section and merging a few boards together, wouldn’t it be nice if you had a breadboard that you could stick e.g. one of those wide ESP32 development boards onto and still have plenty of holes to poke wires and component leads into? Cue [Ludwin]’s 3D printable breadboard design that adds a big hole where otherwise wasted contact holes would be.

The related Instructables article provides a visual overview of the rationale and the assembly process. Obviously only the plastic shell of the breadboard is printed, after which the standard metal contacts are inserted. These contacts can be ‘borrowed’ from commercial boards, or you can buy the contacts separately.

For the design files there is a GitHub repository, with breadboard designs that target the ESP32, Raspberry Pi Pico, and the Arduino Nano. An overview of the currently available board designs is found on the Hackaday.io project page, with the top image showing many of them. In addition to the single big space design there are also a few variations that seek to accommodate just about any component and usage, making it rather versatile.

Performing An Autopsy On 15 Dead Battle Born LFP Batteries

More molten plastic spacers between the bus bar and terminal. (Credit: Will Prowse)
More molten plastic spacers between the bus bar and terminal. (Credit: Will Prowse)

Because size matters when it comes to statistics, [Will Prowse] decided to not just bank on his handful of failed Battle Born LFP batteries when it came to documenting their failure modes. Instead he got a whole gaggle of them from a viewer who had experienced failures with their Battle Born LFP batteries for an autopsy, adding a total of 15 samples to the data set.

Interestingly, the symptoms of these dead batteries are all over the place, from a refusal to charge, some have the overheating terminal, some do not show any sign of life, others have charged cells but a non-responsive BMS, etc. As [Will] notes, it’s important to test batteries with a load and a charger to determine whether they are functional not just whether you can measure a charge.

Although some of the batteries still showed enough signs of life to be put aside for some load testing, the remaining ones were cut open to check their insides. This revealed the typical molten plastic at the terminals, but also a lot of very loose connections for the internal wiring. Another battery showed signs of corrosion inside, which could be due to either moisture intrusion or a cell having leaked its electrolyte.

While the full results will hopefully be released soon, the worrying thing about this latest batch of Battle Born LFP batteries is that they span quite a few years, with one being from 2018. Although it’s comforting that not every one of these batteries is necessarily going to catch on fire within its approximate 8-year lifespan, a lot seems to depend on exactly how you load and charge them, as [Will] is trying to figure out with the upcoming load testing. With the unit that he recently purchased for testing it turned out that lower currents actually made the melting problem much worse.

Between this video and the much awaited follow-up, [Will] actually got his hands on a troubled 300A-rated industrial Battle Born battery. During testing that one actually failed violently with a cell venting and the loose BMS rattling around in the case.

Continue reading “Performing An Autopsy On 15 Dead Battle Born LFP Batteries”