Accessible Arduino Mouse Helps

We enjoy access to cheap stuff because of the mass market for things like mice, keyboards, and cell phones. But if you need a device that doesn’t have mass appeal, you will have to pay a lot more if you can find it at all. However, with modern techniques like 3D printing and Arduino-like microcontrollers being cheap and simple to use, you now have the option to build that special one-of-a-kind device. Case in point: [Davy’s] mouse for people who have brain or nervous system disorders. This particular device is helping a 6-year-old who can’t manipulate a normal mouse.

The device uses an Arduino Pro and an MPU-6050 accelerometer and gyroscope. The original design uses machined aluminum, but 3D printing should work, too. There’s something wrong with the link to the design files in the post, but it is easy to find the correct link.

Continue reading “Accessible Arduino Mouse Helps”

Demonstration of the PMDG 737 being controlled by a blind user using Talking Flight Monitor

Flying Blind: Taking Flight Simulation To A New Level In Accessibility

Software developers [Andy Borka] and [Jason Fayre] have a love for aviation. They are also both totally blind. They’ve developed software called Talking Flight Monitor, and it has made flight simulation possible for anyone with impaired vision or blindness, as you can experience in the blurry video below the break. What draws them to aviation and flight simulators?

This fascination with flight is not limited to the sighted, and who wouldn’t want to experience what it’s like to be in cockpit of a modern airliner? I still recall the awe that I felt when at 9 years old, I glanced the flight deck of a McDonnell Douglas MD-80 as I boarded the aircraft. The array of lights, buttons, switches, and gauges dazzled me for years to come. I wanted to know how all of it worked. I wanted to be a pilot. A few years later I discovered Flight Simulator 4 on a 286, and I was hooked for life.

For the vision impaired this presents a problem. Flight simulators are by nature extremely visual, and they lack the text based interface that would allow a screen reader to help a visually impaired person make use of the simulator. Enter Talking Flight Monitor.

[Andy] and [Jason] have worked with PMDG Simulations to create text friendly interfaces for the 737 and 777 produced by PMDG. These ultra-realistic aircraft are available for the Prepar3D flight Simulator, and they result in a combination that blurs the line between Flight Simulator and Flight Training. By modifying these aircraft with accessible control panels, Talking Flight Monitor allows a completely blind flight simulator user to take off, navigate, and even land without ever seeing the screen.

Talking Flight Monitor makes flight possible using over 70 keyboard shortcuts. Both autopilot control and full manual control of the aircraft simulation are possible. Compatibility with standard simulation software is maintained in such a way that tutorials for programming flight computers not controlled by Talking Flight Monitor will still work. It even includes its own voice, so it does not require a screen reader to use.

Our hats are off to [Andy] and [Jason] for their hard work, diligence, and true application of the Hacker spirit. Thanks to [Mike Stone] for this most excellent tip.

[Note: The images in this post are produced by a community of blind flight simulator users who are not concerned with visual quality. They have been intentionally left blurry.]

Continue reading “Flying Blind: Taking Flight Simulation To A New Level In Accessibility”

Elderly Remote Keeps Things Simple

If you are lucky, you’ve never experienced the heartbreak of watching a loved one lose their ability to do simple tasks. However, as hackers, we have the ability to customize solutions to make everyday tasks more accessible. That’s what [omerrv] did by creating a very specific function remote control. The idea is to provide an easy-to-use interface for the most common remote functions.

This is one of those projects where the technology puzzle is now pretty easy to solve: IR remotes are well-understood and there are plenty of libraries for recording and playing back signals. The real work is to understand the user’s challenges and come up with a workable compromise between something useful and something too complex for the user to deal with.

Continue reading “Elderly Remote Keeps Things Simple”

Smart Guitar Will Practically Play Itself

Playing the guitar is pretty difficult to do, physically speaking. It requires a lot of force with the fretting hand to produce clear notes, and that means pressing a thin piece of metal against a block of wood until the nerve endings in your fingertips die off and you grow calluses that yearn to be toughened even further. Even if you do get to this point of being broken in, it takes dexterity in both hands to actually make music. Honestly, the guitar is kind of an unwelcoming instrument, even if you don’t have any physical disabilities.

A Russian startup company called Noli Music wants to change all of that. They’re building a guitar that’s playable for everyone, regardless of physical or musical ability. Noli Music was founded by [Denis Goncharov] who has a form of muscular dystrophy. [Denis] has always wanted to rock out to his favorite songs, but struggles to play a standard guitar.

If you can touch the fretboard, it seems, you can whale away on this axe without trouble. It’s made to be easier to play all around. The strings aren’t fully tensioned, so they’re easy to pluck — the site says they only take 1.7oz of force to actuate.

Right now, the guitar is in the prototype stage. But when it’s ready to rock, it will do so a couple of ways. One uses embedded sensors in the fretboard detect finger positions and sound the appropriate note whether you pluck it or simply fret it. In another mode, the finger positions light up to help you learn new songs. The guitar will have a touchscreen interface, and Noli are planning on building a companion app to provide interactive lessons.

We have to wonder just how exactly this will be able to mimic the physics of guitar playing, especially since it’s designed with all players in mind. How satisfied will seasoned players be with this instrument? Can it do pull-offs and hammer-ons? What about slides? Do the sensors respond to bends? And most importantly, will the built-in speaker be loud enough to drown out the string vibrations? It seems to do just fine on that front, as you can see in the video below.

If the built-in speaker didn’t drown out the strings, it could make for some interesting sounds that stray outside the western chromatic scale, much like this LEGO microtonal guitar.

Continue reading “Smart Guitar Will Practically Play Itself”

Thought Control Via Handwriting

Computers haven’t done much for the quality of our already poor handwriting. However, a man paralyzed by an accident can now feed input into a computer by simply thinking about handwriting, thanks to work by Stanford University researchers. Compared to more cumbersome systems based on eye motion or breath, the handwriting technique enables entry at up to 90 characters a minute.

Currently, the feat requires a lab’s worth of equipment, but it could be made practical for everyday use with some additional work and — hopefully — less invasive sensors. In particular, the sensor used two microelectrode arrays in the precentral gyrus portion of the brain. When the subject thinks about writing, recognizable patterns appear in the collected data. The rest is just math and classification using a neural network.

If you want to try your hand at processing this kind of data and don’t have a set of electrodes to implant, you can download nearly eleven hours of data already recorded. The code is out there, too. What we’d really like to see is some easier way to grab the data to start with. That could be a real game-changer.

More traditional input methods using your mouth have been around for a long time. We’ve also looked at work that involves moving your head.

Keep In Touch With Grandma, With This Lo-Tech Interface

We have so many options through which to communicate with our friends and relatives during the lockdown, thanks to our smartphones and the number of apps that serve all possible needs. Impressive as they are though, a smartphone is not suitable for everyone. In particular older people can find them less easy to use, and the consequent loss of communication ability is addressed by [Manu] with the Yayagram, described in a thread of Spanish-language Tweets and later the thread was translated into English.

On the top of the box is a microphone with push-to-talk switch, a small thermal printer, and a set of 1/4″ jack sockets with associated jump lead. Each socket corresponds to a relative, and an audio message to that relative can be posted via Telegram simply by speaking into the microphone with the button pressed. Replies are then printed through the thermal printer. Meanwhile behind the scenes is a Raspberry Pi holding it all together.

We like the simplicity of the interface, and who wouldn’t want to ensure that their older relatives were able to keep in touch! But while the jump lead is a neat touch, we hope it’s not too difficult for extremely frail hands. It’s certainly not the first accessibility project for older people that we’ve seen.

Accessibility Keyboard Is Modular And Practical

We don’t have many details from [dariocose] about his K-Ability Dev Kit yet, but there are enough clues on his HackadayPrize2020 entry that we can tease out the critical points. The plan is to supply a control module with Bluetooth HID capability to act as a mouse and keyboard. It will plug into a socket on user-specific boards. Each style will be suited to a patient with a neuromuscular disease and will allow them to interact with computers in a way that suits their needs. For example, if someone lacks fine motor control, they may need large buttons, while someone with weak muscles may need pads close to one another. From the video’s looks below, the prototype boards aren’t anything fancier than cardboard and wire. Developing the best device doesn’t mean a dozen iterative prints or wasted laser-cut acrylic sheets.

Example code supports three mouse movements, left, right, and down, but there are plans to develop a tool to reprogram them. Given the name and prominent LCD, we suspect there will be keyboard support in the future. Processing and Bluetooth rest on the capable shoulders of an ESP32, which also supports touch sensing, so customized pads can respond to a wispy graze or a blunt fist.

We’re not short on customized keyboards that range from glorious elements of comfort to befuddling tools of typing.

Continue reading “Accessibility Keyboard Is Modular And Practical”