[Project 326] has a cheap thermal camera that plugs into a smart phone. Sure they are handy, but what if you could hack one into a microscope with a resolution measured in microns? It is easier than you might think and you can see how in the video below.
Of course, microscopes need lenses, but glass doesn’t usually pass IR very well. This calls for lenses made of exotic material like germanium. One germanium lens gives some magnification. However, using a 3D printed holder, three lenses are in play, and the results are impressive.
The resolution is good enough to see the turns of wire in an incandescent light bulb. A decapsulated power transistor was interesting to view, too. Imaging heat at that much resolution gives you a lot of information. At the end, he teases that using first surface mirrors, he may show how to build an IR telescope as well.
Presumably, this will work with just about any IR camera if you adapt the lens holder. The unit in the video is a UNI-T UTi-260M. So when he says he spent about $35 on the build, that’s not including the $400 or so camera module.
IR imaging can pull off some amazing tricks, like looking inside an IC. If the thermal camera used in the video isn’t to your liking, there are plenty of others out there.
[Maker’s Fun Duck] has a recent video review of a cheap thermal camera from a company called Kaiweets, which you can see below. It checked all of his boxes: It was standalone, handheld, cheap, and not too cheap. The question is: does it work well for the kinds of things we would do with such a camera?
That’s a tricky question, of course, because everyone’s uses are different. Considering a soldering iron. A tiny one is great for working on PCBs, but lousy for soldering large coax connectors. A soldering gun works well for that purpose, but is too much for the PCB. The same goes for thermal cameras. Some are great for, for example, finding leaky parts of houses, but might not be so great at locating defective components on a PCB.
A thermal camera is a very handy tool to have, and [Learn Electronics Repair] wanted to try out the Thermal Master P2 for electronic repair, especially since it claims to have a 15 X digital zoom and 1.5 degree accuracy. The package proudly states the device is the “World 2nd Smallest Thermal Camera” — when only the second best will do.
The camera is tiny and connects to a PC or directly to a tablet or phone via USB C. However, it did look easier to use on the end of a cable for probing things like a PC motherboard. The focus was fairly long, so you couldn’t get extremely close to components with the camera. The zoom somewhat makes up for that, but of course, as you might expect, zooming in doesn’t give you any additional resolution.
He also compares the output with that of a multimeter he uses that includes an IR camera (added to our holiday gift list). That multimeter/camera combo focuses quite closely, which is handy when picking out a specific component. It also has a macro lens, which can zoom up even more.
We’ve looked at — or, more accurately, through — IR cameras in the past. If you are on a tight budget and you have a 3D printer, you might try this method for thermal imaging, but it doesn’t use the printer the way you probably think.
Thermal cameras can cost well into the five-figure range if you’re buying high-resolution models with good feature sets. New models can be so advanced that their export and use is heavily controlled by certain countries, including the USA. If you just want to tinker at the low end, though, you don’t have to spend a lot of scratch. You can even build yourself something simple based on an Arduino Uno!
The build uses Panasonic’s cheap “Grid-EYE” infrared array as the thermal sensor, in this case, a model with an 8×8 array of thermopiles. It’s not going to get you any fancy images, especially at long range, but you can use it to get a very blocky kind of Predator-vision of the thermal radiation environment. It’s a simple matter of hooking up the Grid-EYE sensor to the Arduino Uno over I2C, and then spitting out the sensor’s data in a nice visual form on a cheap TFT screen.
It’s a great introduction to the world of thermal imaging. There’s no better way to learn how something works by building a working example yourself. We’ve featured a few similar projects before, too; it’s all thanks to the fact that thermal sensors are getting cheaper and more accessible than ever!
Do you know how you see those cheap telescopes at the department store? The box has beautiful pictures that probably came from the Hubble. What you will see is somewhat different. You have to carefully look at [upir’s] Arduino thermal camera project because it intersperses pictures of what you expect an 8×8 sensor will produce with images produced by a much better camera.
The actual project — watch the video below — is undoubtedly neat. An inexpensive 8×8 IR sensor and an 8X8 LED panel join to form a crude but usable thermal camera.
Whenever phone-based thermal cameras are brought up here on Hackaday, we inevitably receive some comments about how they’re a bad investment compared to a standalone unit. Sure they might be cheaper, but what happens in a couple years when the app stops working and the manufacturer no longer feels like keeping it updated?
It’s a valid concern, and if we’re honest, we don’t like the idea of relying on some shady proprietary app just to use the camera in the first place. Which is why we’re so excited to see open source software being developed that allows you to use these (relatively) inexpensive cameras on your computer. [Les Wright] recently sent word that he’s been working on a project called PyThermalCamera which specifically targets the TOPDON TC001, which in turn is based on a project called P2Pro-Viewer developed by LeoDJ for the InfiRay P2 Pro.
Readers may recall we posted a review of the P2 Pro last month, and while the compact hardware was very impressive, the official Android software lacked a certain degree of polish. While these projects won’t help you on the mobile front in their current form, it’s good to know there’s at least a viable “Plan B” if you’re unwilling or unable to use the software provided from the manufacturer. Naturally this also opens up a lot of new possibilities for the camera, as being connected to a proper Linux box means you can do all sorts of interesting things with the video feed.
The two video feeds on the left are combined to produce the final thermal image.
Speaking of the video feed, we should say that both of these projects were born out of a reverse engineering effort by members of the EEVblog forums. They figured out early on that the InfiRay (and other similar models) were picked up as a standard USB video device by Linux, and that they provided two video streams: one being a B&W feed from the camera where the relative temperature is used as luminance, and the other containing the raw thermal data cleverly encoded into a green-tinted video. With a little poking they found an FFmpeg one liner that would combine the two streams, which provided the basis for much of the future work.
In the video below, you can see the review [Les] produced for the TOPDON TC001, which includes a demonstration of both the official Windows software and his homebrew alternative running on the Raspberry Pi. Here’s hoping these projects inspire others to join in the effort to produce flexible open source tools that not only unlock the impressive capabilities of these new thermal cameras but save us from having to install yet another smartphone application just to use a device we purchased.
It probably won’t surprise you to learn that Hackaday is constantly hounded by companies that want us to review their latest and greatest gadget. After all, getting us to post about their product is cheaper, easier, and arguably more effective than trying to come up with their own ad campaign. But if you’ve been with us for awhile, you’ll also know that in-house reviews aren’t something we actually do very often.
The reason is simple: we’re only interested in devices or products that offer something useful or unique to this community. As such, the vast majority of these offers get ignored. I’ll give you an example. For whatever reason, multiple companies have been trying desperately to send me electric bikes with five-figure price tags this year. But since there’s no obvious way to turn that into useful content for the readers of Hackaday, I’m still stuck pedaling myself around like it’s the 1900s. I kid of course…I haven’t dared to get on a bike in a decade.
So I don’t mind telling you that, when InfiRay contacted me about reviewing their P2 Pro thermal camera, the email very nearly went into the trash. We’ve seen these kind of phone-based thermal cameras before, and it seemed to be more of the same. But after taking a close look at the specs, accessories, and claims laid out in the marketing material, I thought this one might be worth checking out first-hand.