Fail Of The Week: Laser Cutter That Makes Jagged Edges

This Fail of the Week is really only a failure because of the standards to which [eLabz] holds himself. The rig pictured above is a laser cutter built out of DVD drive parts. It goes above and beyond most of the optical drive CNC projects we see around here — it actually makes cuts! But [eLabz] looks on it as a failure because the steps of the driver motors are visible as jagged edges in those cuts. We see this more as a pausing point in the development process before the next refinement is made.

Continue reading “Fail Of The Week: Laser Cutter That Makes Jagged Edges”

Making Graphene With A DVD Burner

A group of researchers have figured out how to produce graphene using a DVD drive. This discovery helps clear the path for mass production of the substance, which was discovered in the late 1980’s. More recently, the 2010 Nobel Prize for Physics was awarded to a team that produced two-dimensional graphene; a substance one just atom thick. One method of doing so used Scotch tape and is mentioned in the video after the break as a technique that works but is not feasible for large-scale production.

The process seen here starts with graphite oxide because it can be suspended in water. This allows a lab technician to evenly distribute the substance on a plastic surface. Note the use of optical discs. The second part of the process involves hitting the dried layer of graphite oxide with a laser. It just so happens that this can be done with a consumer DVD drive. The result is graphene that can be used in circuits and may have potential as a fantastic super-capacitor.

Continue reading “Making Graphene With A DVD Burner”

Scrapped DVD Player Turns Into A Full Featured Clock

[Dmitry] really went the distance with this project. It started as a broken DVD player scrapped for parts, and turned into this clock with way too many features. That link is a pretty a dry technical collection of the work. You’ll definitely want to have a look at it, but we’d suggest first watching the demo video after the break which is initially much more exciting.

The donor DVD hardware included a Vacuum Fluorescent display which is the nugget which [Dmitry] was after. But that board came along with some other nice things, like an integrated IR receiver. He also chose to use the PSU from the device. An Arduino is used to drive the clock. We’re not sure where he found it, but the video shows the service manual for the DVD player which must have a been a real help in interfacing with the display. The white dome on the right is a PIR motion sensor. It brings the device out of sleep mode when someone is in the room.

The case is laser-cut and started as cardboard to ensure everything fit as designed. The enclosure makes it a showpiece, but the features of displaying day, date, time, and temperature make it functional as well. Since the VFD is alpha-numeric we think this could even see future upgrades to be used as a new-mail/tweet/IM alert as well.

Continue reading “Scrapped DVD Player Turns Into A Full Featured Clock”

Variable Frequency Laser Using Shaken Ball Bearings

Lasers normally emit only one color, or frequency of light. This is true for laser pointers or the laser diodes in a DVD player. [Kevin] caught wind of state-of-the-art research into making variable wavelength lasers using shaken grains of metal and decided to build his own.

When [Kevin] read a NewScientist blog post on building variable frequency lasers built with shaken metallic grains, he knew he had to build on. He dug up the arxiv article and realized the experimental setup was fairly simple and easily achievable with a bit of home engineering.

[Kevin]’s device works by taking thousands of small ball bearings and putting them in a small vial with Rodamine B laser dye. To vibrate the particles in the dye, [Kevin] mounted his container of dye and bearings on an audio speaker and used a frequency generator to shake the ball bearings.

When a small 30mW green laser shines through the vial of ball bearings and dye, the laser changes color to a very bright yellow. By vibrating the vial at 35 to 45 Hz, [Kevin] can change the frequency, or color of the laser.

[Kevin] can only alter the frequency of the laser by about 30 nm, or about the same color change as a reddish-orange and an orangish-yellow. Still, it’s pretty amazing that [Kevin] was able to do state-of-the-art physics research at home.

Sadly, we couldn’t find any videos of [Kevin]’s variable frequency laser. If you can find one send it in to the tip line and we’ll update this post.

Full Color Laser TV

Back in 2001, [Helmar] made an awesome monochrome video display out of a red laser pointer and a spinning 18-sided mirror. Blue and green lasers are much less expensive than they were a decade ago, so [Helmar] decided to go full color with his laser projector. (In German, so fire up Chrome or get the Google translation)

The ancient website for [Helmar]’s green-only projector goes over the principles of operation. A single laser shines onto a multi-faceted polygonal mirror. This is reflected onto another mirror that provides the reflection for each line in a frame of video. Earlier this year, [Helmar] hacked up a red and blue laser to complement the preexisting green laser. The end result is an RGB projector powered by friggin’ lasers.

As far as we can tell, the projector only has composite input; the attached DVD player provides all the signaling for that. Amazingly, [Helmar] didn’t use a microcontroller for the circuitry. All the electronics are simple logic gates. Really amazing if you ask us.

Continue reading “Full Color Laser TV”

RGB Laser Projector Is A Jaw-dropping Build

We can think of no better way to describe this laser projector project than Epic. [C4r0] is a student at Gdansk University of Technology and he’s been working on this projector for at least a couple of years. It uses several different laser diodes pulled out of DVD burners, Blu-Ray drives, and entertainment equipment (the green diode is from a disco laser).

In order to direct the beams he built a series of brackets that hold dichroic filters which reflect some wavelengths of light while allowing others to pass straight through. Each diode also needs a driver, most of which he built from scratch. And once the hardware has been designed and tested, what does one do with it? If you’re [C4r0] you build it into a money case with professional-looking results.

Don’t miss the video demo after the break. And make sure you have a rag ready to wipe up the drool before you look at his forum post linked above.

Continue reading “RGB Laser Projector Is A Jaw-dropping Build”

Laser Light Show Comes To Life From The Junk Bin

In a project that only spanned about three weeks [Lars] built this laser light show projector using parts scavenged from his junk bin. We’ve seen the concept many times before, all you need is a laser source and two mirrors mounted on a spinning bases. The laser diode for this project was pulled from a recordable DVD player. That beam passes through the optics from a laser printer to give it the focus necessary to get a good projected image.

[Lars] played around with the mirror angles until he achieved just the right look. The first mirror is mounted about 4 degrees from being flat with its motorized base; the second is off by about 6 degrees. This introduces slight oscillation in the beam direction when the motors are spinning. By adjusting the speed of each motor you get different patterns. Adjustments are happening completely at random thanks to the BasicStamp2 microcontroller which hadn’t been used in years. Fifteen lines of code were all it took.

Want a laser that’s not controlled at random? Check out this addressable galvanometer-based show.