Reviewing Nuclear Accidents: Separating Fact From Fiction

Few types of accidents speak as much to the imagination as those involving nuclear fission. From the unimaginable horrors of the nuclear bombs on Nagasaki and Hiroshima, to the fever-pitch reporting about the accidents at Three Mile Island, Chernobyl and Fukushima, all of these have resulted in many descriptions and visualizations which are merely imaginative flights of fancy, with no connection to physical reality. Due to radiation being invisible with the naked eye and the interpretation of radiation measurements in popular media generally restricted to the harrowing noise from a Geiger counter, the reality of nuclear power accidents in said media has become diluted and often replaced with half-truths and outright lies that feed strongly into fear, uncertainty, and doubt.

Why is it that people are drawn more to nuclear accidents than a disaster like that at Bhopal? What is it that makes the one nuclear bomb on Hiroshima so much more interesting than the firebombing of Tokyo or the flattening of Dresden? Why do we fear nuclear power more than dam failures and the heavy toll of air pollution? If we honestly look at nuclear accidents, it’s clear that invariably the panic afterwards did more damage than the event itself. One might postulate that this is partially due to the sensationalist vibe created around these events, and largely due to a poorly informed public when it comes to topics like nuclear fission and radiation. A situation which is worsened by harmful government policies pertaining to things like disaster response, often inspired by scientifically discredited theories like the Linear No-Threshold (LNT) model which killed so many in the USSR and Japan.

In light of a likely restart of Unit 1 of the Three Mile Island nuclear plant in the near future, it might behoove us to wonder what we might learn from the world’s worst commercial nuclear power disasters. All from the difficult perspective of a world where ideology and hidden agendas do not play a role, as we ask ourselves whether we really should fear the atom.

Continue reading “Reviewing Nuclear Accidents: Separating Fact From Fiction”

Congratulations To The 2024 Business Card Challenge Winners!

When you ask a Hackaday crowd to design a business card, you should expect to be surprised by what you get. But still, we were surprised by the breadth of entries! Our judges wracked their brains to pick their top ten, and then we compared notes, and three projects rose to the top, but honestly the top ten could have all won. It was a tight field. But only three of the entries get to take home the $150 DigiKey gift certificates, so without further ado…

Continue reading “Congratulations To The 2024 Business Card Challenge Winners!”

Gamma Ray Spectroscopy The Pomelo Way

Depending on the circumstances you find yourself in, a Geiger counter can be a tremendously useful tool. With just a click or a chirp, it can tell you if any invisible threats lurk. But a Geiger counter is a “yes or no” instrument; it can only tell you if an ionizing event occurred, revealing nothing about the energy of the radiation. For that, you need something like this gamma-ray spectroscope.

Dubbed the Pomelo by [mihai.cuciuc], the detector is a homebrew solid-state scintillation counter made from a thallium-doped cesium iodide crystal and a silicon photomultiplier. The scintillator is potted in silicone in a 3D printed enclosure, to protect the hygroscopic crystal from both humidity and light. There’s also a temperature sensor on the detector board for thermal compensation. The Pomelo Core board interfaces with the physics package and takes care of pulse shaping and peak detection, while a separate Pomelo Zest board has an ESP32-C6, a small LCD and buttons for UI, SD card and USB interfaces, and an 18650 power supply. Plus a piezo speaker, because a spectroscope needs clicks, too.

The ability to determine the energy of incident photons is the real kicker here, though. Pomelo can detect energies from 50 keV all the way up to 3 MeV, and display them as graphs using linear or log scales. The short video below shows the Pomelo in use on samples of radioactive americium and thorium, showing different spectra for each.

[mihai.cuciuc] took inspiration for the Pomelo from this DIY spectrometer as well as the CosmicPi.

Continue reading “Gamma Ray Spectroscopy The Pomelo Way”

Hackaday Links Column Banner

Hackaday Links: April 28, 2024

Well, it’s official — AI is ruining everything. That’s not exactly news, but learning that LLMs are apparently being used to write scientific papers is a bit alarming, and Andrew Gray, a librarian at University College London, has the receipts. He looked at a cross-section of scholarly papers from 2023 in search of certain words known to show up more often in LLM-generated text, like “commendable”, “intricate”, or “meticulous”. Most of the words seem to have a generally positive tone and feel a little fancier than everyday speech; one rarely uses “lucidly” or “noteworthy” unless you’re trying to sound smart, after all. He found increases in the frequency of appearance of these and other keywords in 2023 compared to 2022, when ChatGPT wasn’t widely available.

Continue reading “Hackaday Links: April 28, 2024”

Mining And Refining: Uranium And Plutonium

When I was a kid we used to go to a place we just called “The Book Barn.” It was pretty descriptive, as it was just a barn filled with old books. It smelled pretty much like you’d expect a barn filled with old books to smell, and it was a fantastic place to browse — all of the charm of an old library with none of the organization. On one visit I found a stack of old magazines, including a couple of Popular Mechanics from the late 1940s. The cover art always looked like pulp science fiction, with a pipe-smoking father coming home from work to his suburban home in a flying car.

But the issue that caught my eye had a cover showing a couple of rugged men in a Jeep, bouncing around the desert with a Geiger counter. “Build your own uranium detector,” the caption implored, suggesting that the next gold rush was underway and that anyone could get in on the action. The world was a much more optimistic place back then, looking forward as it was to a nuclear-powered future with electricity “too cheap to meter.” The fact that sudden death in an expanding ball of radioactive plasma was potentially the other side of that coin never seemed to matter that much; one tends to abstract away realities that are too big to comprehend.

Things are more complicated now, but uranium remains important. Not only is it needed to build new nuclear weapons and maintain the existing stockpile, it’s also an important part of the mix of non-fossil-fuel electricity options we’re going to need going forward. And getting it out of the ground and turned into useful materials, including its radioactive offspring plutonium, is anything but easy.

Continue reading “Mining And Refining: Uranium And Plutonium”

The DeDeterminator Uses Quantum Physics To Make Decisions So You Don’t Have To

Are you making your own decisions and mainlining causality like a sucker? Why go through the agony, when you could hand over the railway switch of determinism to a machine that can decide things for you! Enter the DeDeterminator, a decision machine from [Oliver Child].

The construction is simple enough, being built inside a small tin. One kind of wishes it had a secret third “PERHAPS” bulb that illuminates only when the universe’s continued existence has been called into question.

The idea is simple. At the press of a button, the DeDeterminator illuminates a bulb—indicating either yes or no. The decision for which bulb to illuminate is truly random, as it’s determined by the radioactive decay of a Americium-241 alpha particle source. A Geiger-Muller tube is used to detect alpha particles, with the timing between detections used to determine the yes-or-no output of the device.

It’s a neat concept, and it’s kind of fun knowing that your decision is both out of your hands and as random as it could possibly be. Would the universe guide you wrong? Who could possibly question the reasoning of the particles? The only rational move could be to comply with whatever directive the box hath given. Just don’t ask it to make any decisions with dangerous outcomes.

We’ve featured other projects using radioactive decay for random number generation before, though they weren’t quite as philosophically intriguing as the DeDeterminator. Mostly they’re just about cryptographic security and such, but some do deal with causality in imaginary spaces, which has its own magic about it.

Meanwhile, if you’ve untangled the quantum chains of cause and effect, or you’ve just found a way to break RSA encryption using a Pi Pico, do drop us a line, won’t you?

End Of An Era: Popular Science Shutters Magazine

Just three years after the iconic magazine abandoned its print version and went all-digital, Popular Science is now halting its subscription service entirely. The brand itself will live on — their site will still run tech stories and news articles, and they have two podcasts that will keep getting new episodes — but no more quarterly releases. While you can’t complain too much about a 151 year run, it’s still sad to see what was once such an influential publication slowly become just another cog in the content mill.

Started as a monthly magazine all the way back in 1872, Popular Science offered a hopeful vision of what was over the horizon. It didn’t present a fanciful version of what the next 100 years would look like, but rather, tried to read the tea leaves of cutting edge technology to offer a glimpse of what the next decade or so might hold. Flip through a few issues from the 1950s and 60s, and you won’t see pulpy stories about humanity conquering the stars or building a time machine. Instead the editors got readers ready for a day when they’d drive cars with warbird-derived turbochargers, and enjoy more powerful tools once transistor technology allowed for widespread use of small brushless motors. It wasn’t just armchair engineering either, issues would often include articles written by the engineers and researchers that were on the front lines. Continue reading “End Of An Era: Popular Science Shutters Magazine”