3D-Printed Parts Don’t Slow Down This Speedy Printer

Truth be told, we generally find speed sports to be a little boring. Whether it’s cars going around in circles for hours on end or swimmers competing to be a few milliseconds faster than everyone else, we just don’t feel the need for speed. Unless, of course, you’re talking about speedy 3D printers like “The 100”, which claims to produce high-quality prints in a tenth the time of an ordinary printer. In that case, you’ve got our full attention.

What makes [Matt the Printing Nerd]’s high-speed printer interesting isn’t the fact that it can do a “Speedboat Run” — printing a standard Benchy model — in less than six minutes. Plenty of printers can do the same thing much, much faster. The impressive part is that The 100 does it with a 3D-printed frame. In fact, most of the printer’s parts are 3d printed, a significant departure from most speed printer builds, which generally shy away from printed structural elements. [Matt]’s design also aims to keep the center of gravity of all the printer’s components within a very small area, which helps manage frame vibrations that limit print quality. The result is that the CoreXY gantry is capable of a speed of 400 mm/s and an eye-popping 100,000 mm/s² acceleration. What also sets [Matt]’s printer apart is that The 100 is designed to be a daily driver. It has a generous 165 mm x 165 mm print bed, which is far more useful than a bed that’s barely bigger than a standard Benchy.

The video below has much more details on the open-source build, plus some nice footage of some speed runs. The quality of the prints, even done at speed, is pretty impressive. Perhaps there is a point to speed sports after all.

Continue reading “3D-Printed Parts Don’t Slow Down This Speedy Printer”

3D-Printed Shredder Eats Lettuce For Breakfast

Shredding things isn’t just good for efficiently and securely disposing of them. It’s also very fun, as well. [Joonas] of [Let’s Print] didn’t have a shredder, so set about 3D printing one of their very own.

The design apes that of the big metal trash shredders you’ve probably seen in videos all over the internet. They use a pair of counter-rotating drums with big teeth. As the drums turn, the teeth grab and pull objects into the gap between the drums, where they are duly torn apart into smaller pieces.

In this design, plastic drums are pressed into service as [Joonas] does not have a metal 3D printer. A brushed DC motor is used to drive the shredder. A large multi-stage gearbox is used to step down the motor’s output and provide plenty of torque to do the job.

The shredder gets tested with plenty of amusing garbage. Everything from old vegetables, to paper, and rock-hard old cheeseburgers are put through the machine. It does an able job in all cases, though obviously the plastic drums can’t handle the same kind of jobs as a proper metal shredder. Harder plastics and aluminium cans stall out the shredder, though. The gearbox also tends to strip gears on the tougher stuff. The basic theory is sound, but some upgrades could really make this thing shine.

Is it a device that will see a lot of practical use? Perhaps not. Is it a fun device that would be the star of your next hackerspace Show and Tell? Absolutely. Plus it might be a great way to get rid of lots of those unfinished projects that always clog up your storage areas, too! Video after the break.

Continue reading “3D-Printed Shredder Eats Lettuce For Breakfast”

Advanced 3D Printing Tips

One of the best things about hanging around with other hackers is you hear about the little tricks they use for things like 3D printing. But with the Internet, you can overhear tips from people you’ll probably never meet, like [3D Printer Academy]. His recent video has a little bit of a click-bait title (“10 Secret 3D Printing Tricks…“) but when we watched it, we did see several cool ideas. Of course, you probably know at least some of the ten tips, but it is still interesting to see what he’s been up to, which you can do in the video below.

At one point he mentions 11 tips, but the title has 10 and we had to stretch to get to that number since some of them have some overlap. For example, several involve making printed threads. However, he also shows some C-clips, a trick to add walls for strength, and printing spur gears. Of course, some of these, like the gears, require specific tools, but many of them are agnostic.

Some of the tips are about selecting a particular infill pattern, which you’d think would be pretty obvious, but then again, your idea of what’s novel and what’s old hat might be different than ours. The explanation of how a print-in-place hinge works is pretty clear (even if it isn’t really a live hinge) and also applies to making chains to transfer power. We also thought the threaded containers were clever.

So if you can overlook the title and you don’t mind seeing a few tips you probably already know, you can probably take something away from the video. What’s your favorite “expert” trick? Let us know in the comments.

A lot of what we print tends to be enclosures and there are some good tips for those floating around. Of course, the value of tips vary based on your experience level. But if you are just starting out, you should check out [Bald Engineer]’s video of things he wished someone had told him when he started 3D printing.

Continue reading “Advanced 3D Printing Tips”

Power Tool Battery Fume Extractor

A solder fume extractor is something we could probably all use. While there isn’t much to them, [Steven Bennett] put a lot of thought into making one that was better for him, and we admired his design process, as well as the extractor fan itself. You can see the finished result in the video below.

The electrical design, of course, is trivial. A computer fan, a switch, and a battery — in this case, a Makita power tool battery. But the Fusion 360 design for the 3D printed parts got a lot of thought to make this one of the best fume extractor fans we’ve seen.

Continue reading “Power Tool Battery Fume Extractor”

Assessing The Micromirror Device From A DLP Printer For Maskless Lithography Duty

Inspired by the idea of creating a maskless lithography system using a digital micromirror device (DMD), [Nemo Andrea] tore into an Anycubic Photon Ultra, DLP & resin-based 3D printer to take a look at its projector system. Here Anycubic isn’t the maker of what is called the ‘optical engine’, which would be eViewTek’s D2 projector and its siblings. This projector assembly itself is based around the Ti DLP300s, which we covered a while back when it was brand new. Since that time Anycubic has released the Photon Ultra and Photon D2 3D printers based around these optical engines.

Using DMD for lithography isn’t a new thing, as [Nemo] points out, referencing the μMLA system by Heidelberg Systems. What would be new is using a freely available and rather affordable DMD (even if it requires sacrificing a 3D printer) to obtain its optical engine in order to create an open and more affordable lithography platform than commercial ‘contact us for a quote’ option.

No doubt it’s a challenging project, but perhaps the nice side effect of having affordable DLP 3D printers out and about is that their DMDs are now also significantly more accessible than they were previously.  We wish [Nemo] all the best in this endeavor, as a maskless lithography machine would be just that addition to any hobbyist’s toolset that we are no doubt waiting for.

(Thanks to Jerry for the tip)

FDM Printing With Resin Update

[Proper Printing] is at it again. He’s trying to perfect his hybrid printer that works like an FDM printer but uses UV-curable resin gel instead of filament. You can see the latest update video below. If you missed our take on his early attempts, you might want to catch up with those earlier videos first.

The latest update brings a new nozzle, an improved light source, and changes to the formula of the resin. The nozzle and light source improvements hinge on conical lenses that convert the laser beams from a spot to a ring. The initial nozzles looked like the business end of a syringe, but this wasn’t very stable. The new video shows a conventional nozzle which also had some issues. This resulted in a custom-made nozzle that solved all the issues with the conventional nozzle and the syringe tips.

The resin formula is particularly crucial. The second attempt used resin with glass beads to give thickness. That wasn’t without problems, though, so it was switched this time with fused silica, as suggested by some comments on a previous video. They also used aggressive mixing and air removal. The consistency of the previous resins was that of a paste, but according to the video, the new mixture is more like a gel.

At some point, things started going badly. There were several equipment failures. Exasperated, he was ready to give up and was editing the video when he had an epiphany. We’re glad he didn’t give up because the new results are pretty impressive.

These printers remind us of some strange laser CNC. It also reminds us a little of people curing resin outside of the normal print process.

Continue reading “FDM Printing With Resin Update”

Will Carmakers Switch Clay For Computers?

The 3D printing revolution has transformed a lot of industries, but according to [Insider Business] the car industry still uses clay modeling to make life-sized replicas of new cars. The video below shows a fascinating glimpse of the process of taking foam and clay and making it look like a real car. Unlike the old days, they do use a milling machine to do some rough work on the model, but there’s still a surprising amount of manual work involved. Some of the older film clips in the video show how hard it was to do before the CNC machines.

The cost of these models isn’t cheap. They claim that some of the models have cost $650,000 to create. We assume most of that is in salaries. Some models take four years to complete and a ton of clay.

Continue reading “Will Carmakers Switch Clay For Computers?”