Flashing Arduinos With A Zipit

zipit_arduino_flashing

[Giacomo] finds that every once in awhile, he needs to flash a sketch to an Arduino while on the go. While he doesn’t always carry his laptop with him, he almost certainly has his Zipit Z2 on hand. He prefers to use the Zipit because it’s tiny, it uses Debian, has built-in WiFi, and can run for about 5 hours before requiring a recharge. The only shortcoming is that the device lacks a serial port.

Following instructions we featured last year he added a serial port to his device, then built a small converter cable that allows him to connect it to virtually any Arduino. He says it only takes a moment to get avrdude up and running on the Zipit via apt-get, and once that’s done, he is in business. He wrote a short script that saves him from entering the flash command over and over, so the process couldn’t be simpler.

He does mention that since the Zipit does not have a DTR line, Arduino resetting must be done manually. For the convenience of flashing sketches from the palm of our hand, we can deal with that.

Check out the video below for a quick demonstration of his setup.

Continue reading “Flashing Arduinos With A Zipit”

The WALL-E Robot

[Dino’s] latest Hack a Week project, the WALL-E Robot shows quite simply what you can create from a few dollars worth of toys from garage sales and cheap stores. When he found the WALL-E toy at a garage sale, Dino decided that he had to give it a brain. Using the geared motors from some Rumble Robots, the H-bridges from some $5 remote control cars (after his own H-bridges cooked themselves), an ultrasonic sensor and an Arduino, WALL-E was brought to life.

The WALL-E Robot might not be the brightest bot, or the most stable, but the project definitely demonstrates some effective scrounging for parts that would have done WALL-E proud. It also shows how even the most simple projects can cause the most headaches when they don’t go right. Check out the video after the break for the build details, a demonstration and to see a man talk to a toy robot.

Continue reading “The WALL-E Robot”

Hacking Cakes With LEDs, The Sequel!

A few weeks back we ran a piece about the convergence of making and baking in an attempt to create a cake festooned with working LEDs. The moral was that not every creative idea ends in victory, but we applauded the spirit it takes to post one’s goofs for the whole internet to see and to learn from.

[Craig]’s LED matrix proved unreliable…and the underlying cake didn’t fare much better, resembling that charred lump in the toaster oven in Time Bandits. The cakes-with-lights meme might have died right there if not for a fluke of association…

Continue reading “Hacking Cakes With LEDs, The Sequel!”

Satellite Tracking By Shining A Laser Into Space

[Shingo Hisakawa] sent in a tip for a for a neat little box called the Levistone that tracks the Internation Space Station with a laser. His video log goes though all the steps for this great little project.

[Shingo] originally planned to pull orbital data down from NORAD and send that to an ArduinoBT board with ethernet, GPS and compass modules. In the original plan, the Arduino would do the orbit calculations and point the laser using a few servos. There wasn’t much success with making an Arduino do all the work, so the an Android phone stood in for the GPS, compass and connection to the web. The duty of calculating the location of the ISS using GPS and orbital elements was moved onto the Amazon EC2 cloud. The final product looks great, even if it’s impossible to record the beam for the video.

With the ability to calculate the azimuth and elevation of the ISS from any point in the world, [Shingo] came up with SightSpaceStation, a neat mashup of his data and Google Maps. There are also iOS and Android apps for a nice piece of work in augmented reality. It’s a great project that would really compliment the ISS desk lamp we covered a few days ago.

Forearm-mounted GPS Uses LEDs To Light The Way Home

arm_mounted_gps

While some people can rely solely on memory and landmarks to find their way home, others need a bit more help. Consider Instructables user [_macke_] for instance.

Like other screenless GPS navigation devices we have seen, his “Find Home Detector” uses a GPS module to obtain his location, guiding the way home via a set of alternate indicators. In this case, he uses LEDs which are laid out like a compass rose. When [_macke_] is aimed toward his destination, the LED nearest to his fingertips lights up, letting him know he is on the right path. As he turns away from home, the other LEDs light, indicating the direction in which he should turn.

His forearm-mounted GPS navigator uses a LilyPad Arduino to control the system, much like others we have seen. It is connected to a GPS sensor and a compass module that work in concert to guide him home. The compass is responsible obtaining his heading information, and while it might look as if the LEDs that surround the module are pointing North, they are in fact indicating the heading of his destination instead.

It’s a cool little creation, and we can imagine it would be quite helpful if you happen to be walking home after a long night of drinking.

Be sure to check out the video below for a quick demonstration.

Continue reading “Forearm-mounted GPS Uses LEDs To Light The Way Home”

ChipKIT Sketch: Mini Polyphonic Sampling Synth

In our hands-on review of the Digilent chipKIT Uno32, we posed the question of what the lasting appeal might be for a 32-bit Arduino work-alike. We felt it needed some novel applications exploiting its special features…not just the same old Arduino sketches with MOAR BITS. After the fractal demo, we’ve hit upon something unique and fun…

Continue reading “ChipKIT Sketch: Mini Polyphonic Sampling Synth”

Capturing Video With An Arduino

[Carlos Agell] sent in a tip where he captured images from an analog camera with an Arduino.

We’ve seen a few AVR/Arduino hacks that generate video, although overclocking is necessary if you want to do anything beyond a Breakout clone. [Carlos]’ hack bucks that trend and now he can capture video with an Arduino.

The project captures individual frames from NTSC video at a resolution of 128×96. Although the Arduino isn’t powerful enough for real-time capture, [Carlos] managed this by capturing only thresholds and sending them over to a computer running a program coded in LabVIEW. The PC program reassembles the images of the thresholds and produces a tiny image in 3-bit grayscale.

[Carlos] used the Video Experimenter shield which is impressive in it’s own right. The Video Experimenter is able to do object tracking and edge detection, so we’re wondering when we’ll see robots with computer vision running off an Arduino. Check out a demo of the nootropic design video experimenter shield after the break.

UPDATE: Carlos wrote a sketch in Processing that does the same thing as his LabVIEW program.

Continue reading “Capturing Video With An Arduino”