The Arduino Due Is Finally Here

After a years-long wait, an ARM powered Arduino is finally due. The Arduino Due will finally be released this coming Monday.

On board the Arduino Due is an Atmel-sourced ARM Cortex M3 microcontroller running at 84 MHz. The Due has an impressive list of features including a USB 2.0 host, compatibility with the Android ADK (lest you still need an IOIO), 12 analog inputs with 12-bit resolution, 2 analog outputs running at 12 bits, a CAN interface, and more input pins than you can shake a stick at.

For a full list of features, you can grab this PDF we picked up when we saw the Due at Maker Faire NYC

This hardware update to the Arduino platform makes a lot of very cool builds very possible for even the beginner hardware hacker. Of course the Due will be used for controlling drones and UAVs, laser cutters and 3D printers, and playing WAV files from the analog outputs. The much improved hardware opens up a lot of other possible builds including making your own guitar pedals – DSP is a wonderful thing – and reading the telemetry from your car in real-time via the CAN bus.

Although it’s not available right now, you will be able to buy an Arduino Due for $49 USD this coming Monday at your favorite electronics retailers. 

LiPo Powered Stellaris Launchpad

Want mobile power for your Stellaris Launchpad development board? [Philipp] was looking to add some lithium power for the Launchpad. He used an off the shelf single cell LiPo battery and connected it to the 5V rail of the Launchpad board. It didn’t work.

So [Philipp] started looking through the schematics and noticed that the regulator was working fine, but the Stellaris wasn’t starting up. He tracked down a voltage supervisor connected to the Stellaris reset pin. After some investigation, it was clear that this supervisor was holding the device in reset.

The solution is a quick and dirty hack: cut the trace that connects the reset line to the voltage line. With this modification, the device starts up from the LiPo without any issues. [Philipp] does note that you should be careful about battery under-voltage and over-voltage. This hack doesn’t handle charging the LiPo battery, but we’ve discussed that in the past.

Using StellarisWare With The Launchpad

In our last Stellaris how-to we got the board working and set some registers to turn on the LED. This time we’ll start using StellarisWare Driverlib, which provides drivers for the microcontroller’s peripherals including GPIOs, UARTs, ADCs, and so on. These libraries make it easier to control the peripherals. We’ll build the Driverlib project, create a project from scratch to use the library, and run a simple LED blinking example.

Continue reading “Using StellarisWare With The Launchpad”

Stellaris Launchpad Library To Drive The TM1638 UI Board

For those that grabbed one of these TM1638 UI boards you can now easily use it with your Stellaris Launchpad. [Dan O] took it upon himself to publish an ARM library for the UI board.

There’s not a lot of new stuff to talk about here. We’ve already seen this being driven by an FPGA. [Dan] also links to both an Arduino and an MSP430 library for the board. The one thing that is good to know is that the board seems to run fine from the 3.3V supplied by the Stellaris Launchpad.

The ARM chip has four different hardware SPI modules which could have been used to drive this display. But [Dan] opted to bit bang instead. This give him more flexibility, like easily changing the pin mapping and foregoing the need for external components. All it takes is direct connections from three I/O pins which are used for clock, data in, and data out. We’ve embedded the obligatory demo video after the break.

Continue reading “Stellaris Launchpad Library To Drive The TM1638 UI Board”

Bringing Java To The World Of Microcontrollers

C is a beautiful language perfectly suited for development on low-power devices such as the 8-bit microcontrollers. With newer, more powerful ARM microcontrollers making their way onto the market and workbenches around the world, it was only fitting that Oracle got in on the action. They released a version of Java targeted at these newer, more powerful microcontrollers called Java ME embedded.

The new embedded version of Java has everything you would expect from a microcontroller development platform – access to GPIO pins, including SD cards and I2C devices. The new Java machine is designed for full headless operation and is capable of running on devices with as little as 130 kB of RAM and 350 kB of ROM.

As for the utility of programming a microcontroller in Java, it’s still the second most popular language, after spending the better part of a decade as the number one language programmers choose to use. The requirements of the new embedded version of Java are far too large to fit onto even the best 8-bit microcontrollers, but with a new crop of more powerful ARM devices, we’ll expect to see more and more ARM/Java projects making their way into the Hackaday tip line in the coming months.

Tip ‘o the hat to [roger] for sending this one in.

Massively Parallel Computer Costs $99

Even though dual, quad, and octo-core CPUs have been around for a while, it’s a far cry from truly massive parallel computing platforms. The chip manufacturer Adapteva is looking to put dozens of CPUs in a small package with their Parallella project. As a bonus, they’re looking for funding on Kickstarter, and plan to open source their 16 and 64-core CPUs after funding is complete.

The Parallella computer is based on the ARM architecture, and will be able to run Ubuntu with 1 Gig of RAM, a dual-core ARM A9 CPU, Ethernet, USB, and HDMI output. What makes the Parallella special is it’s Epiphany Multicore Accelerator – a coprocessor containing up to 64 parallel cores.

Adapteva is turning to Kickstarter for their Parallella computer to get the funding to take their Epiphany multicore daughterboard and shrink it down into a single chip. Once that’s complete, Adapteva will start shipping an ARM-powered Linux supercomputer that’s about the size of a credit card, or a Raspberry Pi under the new system of dev board measurements.

With any luck, the Parallella multicore computer will be available for $99, much less than a comparable x86 multicore computer. It’ll certainly be interesting to see what the Parallella can do in the future.

STM32 F4 Discovery Tutorial Using Open Source Tools

[Pulko Mandy] got his hands on the new STM32 F3 Discovery board. He’s a fan of the open source tools just like we are, so he posted a guide covering the use of an open source toolchain with the F3 hardware.

This board was just announced earlier this month but there is already support for it in OpenOCD. It’s not all that different from the F4 board, which we would think made the process a bit easier. [Pulko] is using the Sourcery CodeBench Lite toolchain, which works for pretty much all of the ARM chips out there. It is GCC based and comes with GDB for debugging (along with all the other tools you would expect). He did created his own Linker script and startup code. These are crucial for ARM so it’s nice that he provided them for us. He finishes up the guide by showing how OpenOCD can be used to flash the code to the chip and how it works with the debugger.

[Photo source]