Keeping Watch Over The Oceans With Data Buoys

When viewed from just the right position in space, you’d be hard-pressed to think that our home planet is anything but a water world. And in all the ways that count, you’d be right; there’s almost nothing that goes on on dry land that isn’t influenced by the oceans. No matter how far you are away from an ocean, what’s going on there really matters.

But how do we know what’s going on out there? The oceans are trackless voids, after all, and are deeply inhospitable to land mammals such as us. They also have a well-deserved reputation for eating anything that ventures into them at the wrong time and without the proper degree of seafarer’s luck, and they also tend to be places where the resources that run our modern technological society are in short supply.

Gathering data about the oceans is neither cheap nor easy, but it’s critically important to everything from predicting what the weather will be next week to understanding the big picture of what’s going on with the climate. And that requires a fleet of data buoys, outnumbering the largest of the world’s navies and operating around the clock, keeping track of wind, weather, and currents for us.

Continue reading “Keeping Watch Over The Oceans With Data Buoys”

China’s Nuclear-Powered Containership: A Fluke Or The Future Of Shipping?

Since China State Shipbuilding Corporation (CSSC) unveiled its KUN-24AP containership at the Marintec China Expo in Shanghai in early December of 2023, the internet has been abuzz about it. Not just because it’s the world’s largest container ship at a massive 24,000 TEU, but primarily because of the power source that will power this behemoth: a molten salt reactor of Chinese design that is said to use a thorium fuel cycle. Not only would this provide the immense amount of electrical power needed to propel the ship, it would eliminate harmful emissions and allow the ship to travel much faster than other containerships.

Meanwhile the Norwegian classification society, DNV, has already issued an approval-in-principle to CSSC Jiangnan Shipbuilding shipyard, which would be a clear sign that we may see the first of this kind of ship being launched. Although the shipping industry is currently struggling with falling demand and too many conventionally-powered ships that it had built when demand surged in 2020, this kind of new container ship might be just the game changer it needs to meet today’s economic reality.

That said, although a lot about the KUN-24AP is not public information, we can glean some information about the molten salt reactor design that will be used, along with how this fits into the whole picture of nuclear marine propulsion.

Continue reading “China’s Nuclear-Powered Containership: A Fluke Or The Future Of Shipping?”

Mickey Shall Be Free!

The end of the year brings with it festive cheer, and a look forward into the new year to come. For those with an interest in intellectual property and the public domain it brings another treat, because every January 1st a fresh crop of works enter the public domain.

We’ll take a look at the wider crop around the day, but this year the big story is that Mickey Mouse, whose first outing was in 1928’s Steamboat Willie, is to get his turn to be released from copyright. [Jennifer Jenkins] from Duke University’s Center for the Study of the Public Domain, is using Mickey’s impending release to take a look at the law surrounding such a well-protected work.

Mickey has perhaps the greatest symbolism of all intellectual property when it comes to copyright terms, having been the reason for the Disney Corporation’s successive successful attempts to have copyright terms extended. Now even their reach is about to come to an end, but beware if you’re about to use him in your work, for the Mickey entering the public domain is an early outing, without gloves or the colours and eyes of his later incarnations. Added to that, Disney have a range of trademarks surrounding him. The piece makes for an interesting read as it navigates this maze, and makes some worthwhile points about copyright and the public domain.

Last year, we welcomed Fritz Lang’s Metropolis to the public domain. Meanwhile if you’re reading this in 2023, we believe our use of a header image featuring the 1928 Mickey to be covered by the doctrine of fair use.

How Germany’s Troubled Pebble Bed Reactor Came Of Age In China

Although the concept of nuclear fission is a simple and straightforward one, the many choices for fuel types, fuel design, reactor configurations, coolant types, neutron moderator or reflector types, etc. make that nuclear fission reactors have blossomed into a wide range of reactor designs, each with their own advantages and disadvantages. The story of the pebble bed reactor (PBR) is among the most interesting here, with its development winding its way from the US Manhattan Project over the Atlantic to Germany’s nuclear power industry during the 1960s, before finding a welcoming home in China’s rapidly growing nuclear power industry.

As a reactor design, PBRs do not use fuel rods like most other nuclear reactors, but rather spherical fuel elements (‘pebbles’) that are inserted at the top of the reactor vessel and extracted at the bottom, allowing for continuous refueling, while helium acts as coolant. With a strong negative temperature coefficient, the design should be extremely safe, while providing high-temperature steam that can be used for applications that otherwise require a coal boiler or gas turbine.

With China recently having put its twin-PBR HTR-PM plant into commercial operation, why is it that it was not the US, Germany or South Africa to first commercialize PBRs, but relative newcomer China?

Continue reading “How Germany’s Troubled Pebble Bed Reactor Came Of Age In China”

Radio Station WWV: All Time, All The Time

Of all the rabbit holes we technical types tend to fall down, perhaps the one with the most twists and turns is: time. Some of this is due to the curiously mysterious nature of time itself, but more has to do with the various ways we’ve decided to slice and dice time to suit our needs. Most of those methods are (wisely) based upon the rhythms of nature, but maddeningly, the divisions we decided upon when the most precise instrument we had was our eyes are just a little bit off. And for a true time junkie, “a little bit off” can be a big, big problem.

Luckily, even the most dedicated timekeepers — those of us who feel physically ill when the clock on the stove and the clock on the microwave don’t match — have a place to go that’s a haven of temporal correctness: radio station WWV. Along with sister stations WWVB and WWVH, these stations are the voice of the US National Institutes for Standards and Technology’s Time and Frequency Division, broadcasting the official time for the country over shortwave radio.

Some might say the programming coming from these stations is a bit on the dry side, and it’s true that you can only listen to the seconds slip by for so long before realizing that there are probably better things to do with your day. But the WWV signals pack a surprising amount of information into their signals, some of it only tangentially related to our reckoning of time. This makes these stations and the services they provide essential infrastructure for our technological society, which in turn makes it worth your time to look into just how they do it.

Continue reading “Radio Station WWV: All Time, All The Time”

Bunnie Huang’s Shenzhen Guide Gets A New Edition – Written By Naomi Wu

If there’s one city which can truly claim to be the powerhouse of high-tech manufacturing here in the 21st century, it’s the Chinese city of Shenzhen. It’s likely that few people don’t own something made in that city or with parts that have passed through companies in the legendary electronic component markets of its Huaqiangbei district.

For years now the essential introduction to this world has come in the form of [Bunnie Huang]’s Essential Guide to Electronics in Shenzhen, a publication that unlocks the Chinese-speaking maze of vendors. All paper publications eventually become dated though, and this guide is no exception, so we’re very pleased to see a new version is on its way. Better still, it comes courtesy of Shenzhen native and maker extraordinaire [Naomi Wu], whose video series on YouTube has opened up so many corners of her city for those of us thousands of miles away. We can’t wait to see what she puts in it.

It’s also very good indeed on another level to see [Naomi]’s involvement, as earlier in the year she had to curtail her social media output under pressure from the Chinese government. We miss her unique window into the wonders of her city, and aside from her online shop it’s been concerning to hear very little from her of late. You can hear her talking about the book in a promotional video below the break.

Continue reading “Bunnie Huang’s Shenzhen Guide Gets A New Edition – Written By Naomi Wu”

Artemis’ Next Giant Leap: Orbital Refueling

By the end of the decade, NASA’s Artemis program hopes to have placed boots back on the Moon for the first time since 1972. But not for the quick sightseeing jaunts of the Apollo era — the space agency wants to send regular missions made up of international crews down to the lunar surface, where they’ll eventually have permanent living and working facilities.

The goal is to turn the Moon into a scientific outpost, and that requires a payload delivery infrastructure far more capable than the Apollo Lunar Module (LM). NASA asked their commercial partners to design crewed lunar landers that could deliver tens of tons of to the lunar surface, with SpaceX and Blue Origin ultimately being awarded contracts to build and demonstrate their vehicles over the next several years.

Starship and Blue Moon, note scale of astronauts

At a glance, the two landers would appear to have very little in common. The SpaceX Starship is a sleek, towering rocket that looks like something from a 1950s science fiction film; while the Blue Moon lander utilizes a more conventional design that’s reminiscent of a modernized Apollo LM. The dichotomy is intentional. NASA believes there’s a built-in level of operational redundancy provided by the companies using two very different approaches to solve the same goal. Should one of the landers be delayed or found deficient in some way, the other company’s parallel work would be unaffected.

But despite their differences, both landers do utilize one common technology, and it’s a pretty big one. So big, in fact, that neither lander will be able to touch the Moon until it can be perfected. What’s worse is that, to date, it’s an almost entirely unproven technology that’s never been demonstrated at anywhere near the scale required.

Continue reading “Artemis’ Next Giant Leap: Orbital Refueling”