Building A 1300 Lumen Bike Light

[Brainiac27] isn’t going to let the absence of sun prevent him from biking. He has no trouble lighting his path with this 1300 Lumen bike light he built.

The light source is a 3-up star by Cree. It puts off a lot of light, but also generates quite a bit of heat which is the reason for that large heat sink. It is meant to be used with a CPU but works well for this purpose thanks to the adhesive thermal paste used to unite the two parts.

The mounting bracket is a custom job, bent from 1″ by 1/8″ aluminum bar. [Brainiac27] had some issues with length the first time he tried making it. For his second attempt he started with an overly long piece, made the bends from the center out, and only made cuts once the bends were all completed. The bracket makes it easy to mount to his bike, with the battery stored in a bike bottle and a remote switch (with attaches to the jack you can see on the project box above) hidden underneath one of the brake hoods.

The intensity of this light nearly doubles one of our other favorites.

This Giant Hand Made LED Matrix Must Be Ours!

giant-led-matrix

[Martin] wrote in to share a project his company has been working on for some time, a gigantic 1470 pixel LED wall. The group provides lighting for clubs, parties, etc, and their hand-built LED matrix is always certain to be the hit of the show.

The amazing matrix was designed from the ground up and built by hand in [Martin’s] living room. They designed small 32x32mm “pixel” boards, each of which features 6 PLCC6 RGB LEDs driven by a single WS2801 LED controller. The PCBs were populated by hand and each one was reflowed in a small pizza oven that [Martin] owns. After the pixels were completed, they were attached to aluminum bar and combined to build thirty 70x70cm frames which are connected together to form a giant matrix.

As you can see in the collection of videos below, the display is very impressive. We just hope that they will be compelled to release the schematics for their boards so that we can build one of these in the office.

Continue reading “This Giant Hand Made LED Matrix Must Be Ours!”

Video Display From RGB Strips Makes It Seem So Easy

[Fabien] wrote in to share a link to this RGB video display which he made. He’s got some pretty cool routines that make it more functional than you would think, but first we want to comment on the construction. He used an RGB strip, which makes this look like an incredibly simple build. The strip has a data and power bus running the length of it. You can it into smaller segments, then just solder jumper wires to reconnect the buses. That’s exactly what he did here, making it what must be the fastest method of putting together a display of this size (16×10 pixels).

It’s driven by a Netduino which easily addresses the LPD8806 drivers responsible for the LEDs. It gets input from a computer via Xbee, making it easy to include data from the net, or to push visualizations. The video after the break shows a [Van Gogh] self-portrait. Since 160 pixel resolution wouldn’t do it justice, the visualization software shows a zoomed in portion of the painting which is constantly panning to let you see the entire work. It’s a fabulous effect.

Continue reading “Video Display From RGB Strips Makes It Seem So Easy”

Lighting LEDs With Raindrops

[Steven] had one of those musical gift cards laying around, and thought he might as well reuse the piezo speaker inside it. Without a particular project in mind, he soldered an LED to the piezo and tapped on it, which caused the LED to illuminate as expected. He started to wonder what quantity of force would be required to light the LED, and if it could be done by a raindrop.

He first tested his theory in the shower, and as you can see in the video below it actually worked, though the light was dim and sporadic as you might imagine. He eventually discovered that for optimal lighting, the piezo worked best when struck by single droplets falling with pauses in between, from a minimum height of 4 feet. To achieve a water flow within those specifications, he built a rain funnel so that he can control the droplet frequency and intensity.

It seems to work pretty well from what we can see. Off the top of our heads we can’t seem to come up with any practical applications of the water powered LED, but it is an interesting set of experiments nonetheless.

Have an idea to use this setup that we totally missed? Let us know in the comments!

[Thanks, Rob]

Continue reading “Lighting LEDs With Raindrops”

Monitoring Batch Jobs The Cylon Way With Python And A Parallel Port

parallel-port-trigger

If you happen to do a lot of video encoding, you know that your computer can really drag while the process is carried out. Our own [Mike Szczys] transcodes videos at home fairly often, and because the process is automated, he doesn’t always know if a conversion is taking place in the background.

He has been tinkering with Larson Scanners recently and thought he could put everything he’s learned along the way to good use by using the scanner as a “busy” indicator for his PC. He hooked the scanner up to the computer’s parallel port, and took a few minutes to bang out some Python code that would alert him when his PC was busy.

He set his notifier script to launch along with FFMPEG, whenever his MythTV setup had something ready to convert. The Python script drives a pin on the parallel port high, triggering the Larson Scanner’s animation. Every minute, the script checks the status of FFMPEG and continues to hold the pin high until the application exits. Once the conversion is done, the scanner goes back to sleep, letting [Mike] know that the coast is clear.

Check out the video below the break to see his parallel port trigger in action.

Continue reading “Monitoring Batch Jobs The Cylon Way With Python And A Parallel Port”

DIY LED Photography Lights

led-light-box

[Markus] had been drooling over some LED panels to use as a soft light source for photography, but being a hobbyist, he didn’t want to spend a ton of money to buy them. He figured that he had enough electronics know-how to build his own panels, while saving a boatload of cash in the process.

He hoped to keep the total cost under £100, so along with new items like LED light strips, he would have to use some stuff he had sitting around, like the metal cooking containers that make up the body of the lights. While originally planned for use in a different project, it turns out that the cooking containers were ideal for his lighting setup, since they are both durable and great heatsink material.

The remainder of the build is pretty straightforward. [Markus] used a pre-made LED dimmer to control the panel’s brightness, along with some tinted plexiglas to diffuse the light while bringing the color temperature into a more usable range.

While he missed his £100 mark, the lights look great – we just might have to build a few of them ourselves.

ColorNode: A Drop-in GE Color Effects LED Controller

colornode-ge-color-effects-controller

[Paul] was looking to spice up his holiday decorations this year, so he picked up some GE Color Effects lights and started hacking away.

We’ve already seen how hacker-friendly these LED bulbs are, which is why [Paul] decided to give them a try. His ultimate goal was to synchronize several sets of lights from one location, which would unfortunately require that he run wires from his control board to each of the strings.

He then decided to go a different route, and build his own control board that would work as a drop-in replacement for GE’s controller circuitry. He wanted to retain the wireless control aspect of the lights, so he picked up some RFM12B wireless modules which happen to be well-supported by the folks at JeeLabs.

He modified their JeeNode board design to fit it in the Color Effects electronics enclosure, paring it back to the minimum components necessary to control his lights.

The hardware side of the ColorNode is complete, but the software is a work in progress. [Paul] says that once he gets things wrapped up, he will make the code available on his site.