Bizarre Mini Amplifier + White Noise Generator?

bma_finished_a

[Jordi] made this awesome looking mini amplifier which has a rather unusual feature. He’s calling it the Bizarre Mini Amplifier because it also has a white noise generator built right into it! Bizarre right?

Now, most people would just find a suitable amplifier and put it into a nice box, but not [Jordi]! He’s designed the amplifier circuit from the ground up! It features four distinct stages like most typical amplifiers:

  1. Impedance Adapt Stage: Two OPAMPS for both the left and right channels — The high input impedance allows for different audio sources to be connected without affecting the output.
  2. Mixer stage: Combines the left, right and noise signals into one, using a third OPAMP. A potentiometer is the output resistor which allows for the volume control.
  3. Filter Stage: A simple filter stage that uses a R-C low-pass filter, another potentiometer controls the tone.
  4. Power Stage: A final power amplifier to boost the output.

After building the circuit, there was a bit of troubleshooting to get it to work properly, so if you’re interested [Jordi] has done a great write-up of this on his blog.

Finally, he decided to add a white noise generator after he discovered it helps him sleep. This is the one part of the project that he didn’t actually go into detail for! But, considering it’s just white noise, we could probably figure out what he did. Stick around after the break to see the device in action!

Continue reading “Bizarre Mini Amplifier + White Noise Generator?”

Ultrasonic Data Transmission With GNU Radio

When we hear GNU Radio was used in a build, the first thing we think of is, obviously, radio. Whether it’s a using extremely expensive gear or just a USB TV tuner dongle, GNU Radio is the perfect tool for just about everything in the tail end of the electromagnetic spectrum.

There’s no reason GNU Radio can’t be used with other mediums, though, as [Chris] shows us with his ultrasound data transmission between two laptops. He’s transmitting audio from the speakers of one laptop at 23 kHz. It’s outside the range of human hearing, but surprisingly able to be picked up by a cheap desktop mic connected to another laptop. His GNU Radio setup first converts a string of text to a 5-bit packet, modulates it with FSK, and bumps up the signal to 23 kHz. On the other end, the data is decoded by doing the same thing in reverse.

The setup is easily able to reject all audio that isn’t in the specified frequency range; in the video after the break, [Chris] successfully transmits a ‘hello world’ while narrating what he’s doing.

Continue reading “Ultrasonic Data Transmission With GNU Radio”

Fubarino Contest: Morse Code Transmitter

fubarino-contest-morse-code-keyer

The Fubarino Contest entries are slowing streaming in. Here’s the first one that we’re featuring, sent in by [Nathanael Wilson]. He dusted off a project from some time ago, which is just fine with us. It’s a Morse Code transmitter which he designed for use during a fox hunt (locating a hidden transmitter using radio direction finding).

For the project he revised his old code, adding in a Morse look-up table so that the Arduino Mega 2560 can convert plain text into dots and dashes. It uses the tone library to output signals to the radio seem above. The easter egg is unlocked when shorting pin 10 at power-up. It then broadcasts a slightly altered message as interpreted above.

One of the reasons we chose to feature [Nathanael’s] entry first is that he presented it very well. Watch his video after the break to see for yourself. Then go back and check out the contest rules to get your own project submission in. After all, you can win a free Fubarino board from Microchip if you’re in the top twenty!

Continue reading “Fubarino Contest: Morse Code Transmitter”

Super Simple FM Transmitter

Making your own FM radio is practically a rite of passage for hackers. How about making a small FM transmitter?

Originally designed by the Japanese multimedia artist [Tetsuo Kogawa], this simple FM transmitter can be built with only 10 components and about an hour of your time. The method shown here is one of the easiest to build, and it’s called the Manhattan Style — the same method used when [Bill Meara] built his BITX radio. It’s unique in that instead of using traces it uses one copper PCB which is used for all ground connections, and then small islands of the same PCB glued on top to form nodes for the circuit to connect to. Besides being an extremely easy way to make a PCB without any fancy tools, it also makes you think about circuits in a different light. In fact, it gives “floating ground” a whole new meaning!

While its 10 component count is impressive, it can’t beat this 3 component FM transmitter we shared a year ago! Stick around after the break to see how to make your very own.

Continue reading “Super Simple FM Transmitter”

Retrotechtacular: WWII Paraset Spy Radio Used By French Resistance

 

[Robert Sumption] a.k.a [W9RAS] takes on the daunting challenge of building a WWII spy radio called the Paraset as the topic of this week’s Retrotechtacular. It was originally a tube based CW (Morse code) transmitter/receiver used by the French underground to communicate with the Allies. Many of these radios were dropped behind enemy lines and could run on European AC or 6 V DC with the added advantage of being able to use most anything for an antenna, including fence wire. These small, low power and highly mobile radios tuned in the 3 to 8 MHz range were instrumental in the resistance. But they still make for a really fun scratch-built radio project.

Continue reading “Retrotechtacular: WWII Paraset Spy Radio Used By French Resistance”

Amateur Radio Transmits 1000 Miles On Voice Power

Many of us tried the old “Two tin cans connected by a string” experiment as kids. [Michael Rainey, AA1TJ] never quite forgot it.  Back in 2009, he built “El Silbo”, a ham radio transmitter powered entirely by his voice. El Silbo is a Double Side Band (DSB) transmitter for 75 meters. While voice is used to excite the transmitter, it doesn’t actually transmit voice. El Silbo is a CW affair, so you should bone up on your Morse Code a bit before building one. Like many QRP transmitters El Silbo’s circuit is rather simple. A junk box loudspeaker is installed at the bottom of the can to convert voice power to electrical power. The signal is passed through a step up transformer, and used to excite a 75m crystal. Two NPN transistors (in this case MPS6521) pass the signal on through a second transformer. The signal is then routed through an LC network to the antenna.

Back in 2009, [Michael] brought El Silbo to the Maine coast in an attempt to make a transatlantic contact. This isn’t as far-fetched as it sounds – [Michael] has “crossed the pond” on less power. While the attempt wasn’t successful, [Michael] has made connections as far as 1486km, or 923 miles. That’s quite a distance for simply yelling into a tin can! One of [Michael’s] favorite El Silbo stories is a 109KM conversation (QSO) he had with W1PID. [Michael] found that the signal was so good, he didn’t have to yell at all. He reduced power by dropping to his normal speaking voice for the “dits and dahs”. The two were able to converse for 17 minutes with [Michael] only using his speaking voice for power. We think this is an amazing achievement, and once more proof that you don’t need a multi-thousand dollar shack to make contacts as a ham.

Continue reading “Amateur Radio Transmits 1000 Miles On Voice Power”

Sniffing Data From Radio-Controlled Bus Stop Displays

A few weeks ago in Finland [Oona] discovered a radio data stream centered around 76KHz in a FM broadcast and she recently managed to decode it. This 16,000bps stream uses level-controlled minimum-shift keying (L-MSK) which detection can be quite tricky to implement. She therefore decoded the stream by treating the received signal as non-coherent binary FSK, which as a side effect increased the bit error probability. [Oona] then understood that the stream she was getting was the data broadcast by Helsinky buses to the nearby bus stop timetable displays. She even got lucky when she observed a display stuck in the middle of its bootup sequence, displaying a version string. This revealed that the system is called IBus and made by the Swedish company Axentia. However their website didn’t provide the specs for their proprietary protocol. After many hours of sniffing and coding, [Oona] successfully implemented the five layer protocol stack in Perl and can now read the arrival times of the nearby buses from her apartment.