Review: New 3G And Cat-M1 Cellular Hardware From Hologram

In July we reported on the launch of the Hologram developer program that offered a free SIM card and a small amount of monthly cellular data for those who wanted to build connectivity into their prototypes. Today, Hologram has launched some new hardware to go along with that program.

Nova is a cellular modem in a USB thumb drive form factor. It ships in a little box with a PCB that hosts the u-blox cellular module, two different antennas, a plastic enclosure, and a SIM card. The product is aimed at those building connected devices around single-board computers, making it easy to plug Nova in and get connected quickly.

This device that Hologram sent me is a 3G modem. They have something like 1,000 of them available to ship starting today, but what I find really exciting is that there is another flavor of Nova that looks the same but hosts a Cat-M1 version of the u-blox module. This is a Low Power Wide Area Network technology built on the LTE network. We’ve seen 2G and 3G modems available for some time now, but if go that route you’re building a product around a network which has an end-of-life concern.

Cat-M1 will be around for much longer and it is designed to be low power and utilizes a narrower bandwidth for less radio-on time. I asked Hologram for some power comparison estimates between the two technologies:

AVERAGE current consumption comparisons:

Cat-M1: as low as 100 mA while transmitting and never more than 190 mA
Equivalent 3G: as high as 680 mA while transmitting

PEAK current consumption comparisons (these are typically filtered through capacitors so the power supply doesn’t ever witness these values, and they are only momentary):

Cat-M1: Less than 490 mA
Equivalent 3G: As high as 1550 mA

This is an exciting development because we haven’t yet seen LTE radios available for devices — of course there are hotspots but those are certainly not optimized for low power or inclusion in a product. But if you know your ESP8266 WiFi specs you know that those figures above put Cat-M1 on a similar power budget and in the realm of battery-operated devices.

The Cat-M1 Nova can be ordered beginning today, should ship in limited quantities within weeks, with wider availability by the end of the year. If you can’t get one in the first wave, the 3G Nova is a direct stand-in from the software side of things.

I suspect we’ll see a lot of interest in Cat-M1 technology moving forward simply because of the the technology promises lower power and longer support. (I’m trying to avoid using the term IoT… oops, there it is.) For today, let’s take a look at the 3G version of the new hardware and the service that supports it.

Continue reading “Review: New 3G And Cat-M1 Cellular Hardware From Hologram”

Return To The Asus Tinker Board: Have Six Months Changed Anything?

The Asus Tinker Board, in all its glory
The Asus Tinker Board, in all its glory

Back in February this year, we ordered a new single board computer, and reviewed it. The board in question was the Asus Tinker Board, a Raspberry Pi 3 competitor from the electronics giant in a very well-executed clone of the Raspberry Pi form factor.

Our review found its hardware to be one of the best of that crop of boards we had yet seen, but found serious fault with the poor state of its software support at the time. There was no website, the distro had to be downloaded from an obscure Asus download site, and there was no user community or support channel to speak of. We were then contacted by some of the folks from Asus who explained that the board had not yet been officially launched, and that the unit we’d secured had escaped the fold a little early. Continue reading “Return To The Asus Tinker Board: Have Six Months Changed Anything?”

Review: Aneng LT-001 USB Soldering Iron

When it comes to soldering irons, most of us are likely to be in agreement that there is a level of quality below which we will not descend. To do a decent job requires a decent tool, and when it comes to soldering that means a good quality temperature controlled iron with a decent power level and a quality bit. Anything else just isn’t worth considering.

But what if you look at it from the opposite angle? When it comes to soldering, just how low can you go? In that case probably the ultimate scraping of the soldering barrel comes courtesy of USB soldering irons, taking their juice from a five volt phone charger socket and providing tiny power levels you’d expect to be barely enough to work at all. Surely these are toys, not irons! Continue reading “Review: Aneng LT-001 USB Soldering Iron”

Monoprice Mini Delta Review

For the last year or so, Monoprice has been teasing their follow-up to the fantastic $200 MP Select Mini. This is the $150 mini delta printer. We got a look at it last January at CES, it was on display at the Bay Area Maker Faire last May. Now there’s one on the Hackaday review desk.

Over the last few years, 3D printing has settled down into what most of us expected way back in 2010. No, not everyone wants, or arguably needs, a 3D printer on their desks. This is a far cry from the hype of a few years ago, leaving us with what we have today. 3D printers are just tools, much like a drill press or a laser cutter.

With that said, there still are some fantastic advances in 3D printing coming down from on high. Prusa will be shipping the 4-color multi-extruder add-on for the i3 Mk 2 shortly, and somehow or another we have infinite build volume printers. Still, there’s space to democratize 3D printing, and an opportunity for someone to release a very cheap, very good printer.

Monoprice was kind enough to send me a review unit of the MP Mini Delta before it officially hit their website. This is one of the first off the production line, alongside the few hundred pre ordered on an Indiegogo campaign earlier this year.  Does this printer live up to expectations? It sure does, and that’s not just because it’s a $150 printer.

This would be an excellent printer at three times the price, and evidence enough that 3D printing is changing from a weird hobbyist thing to a proper tool.

Continue reading “Monoprice Mini Delta Review”

Bibles You Should Read: PoC || GTFO

PASTOR LAPHROAIG ANNOUNCES THE PUBLICATION OF WHAT WILL TORMENT THE ACOLYTES OF THE CHURCH OF ROBOTRON! NO MAN SHALL BE SPARED AND THE INQUISITION WILL BEGIN PROMPTLY!

For the last few years, Pastor Manul Laphroaig and friends have been publishing the International Journal of PoC || GTFO. This is a collection of papers and exploits, submitted to the Tract Association of PoC || GTFO, each of which demonstrates an interesting exploit, technique, or software toy in the field of electronics. Imagine, if 2600 or Dr. Dobb’s Journal were a professional academic publication. Add some whiskey and you have PoC || GTFO.

This is something we’ve been waiting a while for. The International Journal of PoC || GTFO is now a real book bible published by No Starch Press. What’s the buy-in for this indulgence? $30 USD, or a bit less if you just want the Ebook version. The draw of the dead tree version of PoC includes a leatherette cover, gilt edges, and the ability to fit inside bible covers available through other fine retailers. There are no rumors of a children’s version with vegetable-based characters.

PoC || GTFO, in reality, is an almost tri-annual journal of reverse engineering, computer science, and other random electronic computational wizardry, with papers (the Proof of Concept) by Dan Kaminsky, Colin O’Flynn, Joe FitzPatrick, Micah Elisabeth Scott, Joe Grand, and other heroes of the hacker world. What does PoC || GTFO present itself as? Applied electrons in a religious tract publication. The tongue is planted firmly in the cheek here, and it’s awesome.

Continue reading “Bibles You Should Read: PoC || GTFO”

Books You Should Read: IGNITION!

Isaac Asimov described the business of rocket fuel research as “playing footsie with liquids from Hell.” If that piques your interest even a little, even if you do nothing else today, read the first few pages of IGNITION! which is available online for free. I bet you won’t want to stop reading.

IGNITION! An Informal History of Liquid Rocket Propellants is about how modern liquid rocket fuel came to be. Written by John D. Clark and published in 1972, the title might at first glance make the book sound terribly dry — it’s not. Liquid rocket fuel made modern rocketry possible. But most of us have no involvement with it at all besides an awareness that it exists, and that makes it easy to take for granted.

Most of us lack any understanding of the fact that its development was the result of a whole lot of hard scientific work, and that work required brilliance (and bravery) and had many frustrating dead ends. It was also an amazingly dangerous business to be in. Isaac Asimov put it this way in the introduction:

“[A]nyone working with rocket fuels is outstandingly mad. I don’t mean garden-variety crazy or a merely raving lunatic. I mean a record-shattering exponent of far-out insanity.

There are, after all, some chemicals that explode shatteringly, some that flame ravenously, some that corrode hellishly, some that poison sneakily, and some that stink stenchily. As far as I know, though, only liquid rocket fuels have all these delightful properties combined into one delectable whole.”

At the time that the book was written and published, most of the work on liquid rocket fuels had been done in the 40’s, 50’s, and first half of the 60’s. There was plenty written about rocketry, but very little about the propellants themselves, and nothing at all written about why these specific substances and not something else were being used. John Clark — having run a laboratory doing propellant research for seventeen years — had a unique perspective of the whole business and took the time to write IGNITION! An Informal History of Liquid Rocket Propellants.

Liquid rocket propellant was in two parts: a fuel and an oxidizer. The combination is hypergolic; that is, the two spontaneously ignite and burn upon contact with each other. As an example of the kinds of details that mattered (i.e. all of them), the combustion process had to be rapid and complete. If the two liquids flow into the combustion chamber and ignite immediately, that’s good. If they form a small puddle and then ignite, that’s bad. There are myriad other considerations as well; the fuel must burn at a manageable temperature (so as not to destroy the motor), the energy density of the fuel must be high enough to be a practical fuel in the first place, and so on.

The actual process of discovering exactly what materials to use and how precisely to make them work in a rocket motor was the very essence of the phrase “the devil is in the details.” For every potential solution, there was a mountain of dead-end possibilities that tantalizingly, infuriatingly, almost worked.

The first reliable, workable propellant combination was Aniline and Red Fuming Nitric Acid (RFNA). “It had the one – but magnificent – virtue that it worked,” writes Clark. “Otherwise it was an abomination.” Aniline was difficult to procure, ferociously poisonous and rapidly absorbed through skin, and froze at an inconvenient -6.2 Celsius which limited it to warm weather only. RFNA was fantastically corrosive, and this alone went on to cause no end of problems. It couldn’t be left sitting in a rocket tank waiting to be used for too long, because after a while you wouldn’t have a tank left. It needed to be periodically vented while in storage. Pouring it gave off dense clouds of remarkably toxic gas. This propellant would go on to cause incredibly costly and dangerous problems, but it worked. Still, no one wanted to put up with any of it one moment longer than they absolutely had to. As a result, that combination was not much more than a first step in the whole process; there was plenty of work left to do.

By the mid-sixties, liquid rocket propellant was a solved problem and the propellant community had pretty much worked themselves out of a job. Happily, a result of that work was this book; it captures history and detail that otherwise would simply have disappeared.

Clark has a gift for writing, and the book is easy to read and full of amusing (and eye-widening) anecdotes. Clark doesn’t skimp on the scientific background, but always in an accessible way. It’s interesting, it’s relevant, it’s relatable, and there is plenty to learn about how hard scientific and engineering development actually gets done. Download the PDF onto your favorite device. You’ll find it well worth the handful of evenings it takes to read through it.

Review: TS100 Soldering Iron

Temperature-controlled soldering irons can be cheap, lightweight, and good. Pick any two of those attributes when you choose an iron, because you’ll never have all three. You might believe that this adage represents a cast-iron rule, no iron could possibly combine all three to make a lightweight high-performance tool that won’t break the bank! And until fairly recently you’d have had a point, but perhaps there is now a contender that could achieve that impossible feat.

The Miniware TS100 is a relatively inexpensive temperature-controlled soldering iron from China that has made a stealthy entry to the market, and which some online commentators claim to be the equal of far more expensive professional-grade irons. We parted with just below £50 (around $60) to place an order for a TS100, and waited for it to arrive so we could see what all the fuss was about. Continue reading “Review: TS100 Soldering Iron”