This Week In Security: What’s Up With Whatsapp, Windows XP Patches, And Cisco Is Attacked By The Thrangrycat

Whatsapp allows for end-to-end encrypted messaging, secure VoIP calls, and until this week, malware installation when receiving a call. A maliciously crafted SRTCP connection can trigger a buffer overflow, and execute code on the target device. The vulnerability was apparently found first by a surveillance company, The NSO Group. NSO is known for Pegasus, a commercial spyware program that they’ve marketed to governments and intelligence agencies, and which has been implicated in a number of human rights violations and even the assassination of Jamal Khashoggi. It seems that this Whatsapp vulnerability was one of the infection vectors used by the Pegasus program. After independently discovering the flaw, Facebook pushed a fixed client on Monday.

Windows XP Patched Against Wormable Vulnerability

What year is it!? This Tuesday, Microsoft released a patch for Windows XP, five years after support for the venerable OS officially ended. Reminiscent of the last time Microsoft patched Windows XP, when Wannacry was the crisis. This week, Microsoft patched a Remote Desktop Protocol (RDP) vulnerability, CVE-2019-0708. The vulnerability allows an attacker to connect to the RDP service, send a malicious request, and have control over the system. Since no authentication is required, the vulnerability is considered “wormable”, or exploitable by a self-replicating program.

Windows XP through Windows 7 has the flaw, and fixes were rolled out, though notably not for Windows Vista. It’s been reported that it’s possible to download the patch for Server 2008 and manually apply it to Windows Vista. That said, it’s high time to retire the unsupported systems, or at least disconnect them from the network.

The Worst Vulnerability Name of All Time

Thrangrycat. Or more accurately, “😾😾😾” is a newly announced vulnerability in Cisco products, discovered by Red Balloon Security. Cisco uses secure boot on many of their devices in order to prevent malicious tampering with device firmware. Secure boot is achieved through the use of a secondary processor, a Trust Anchor module (TAm). This module ensures that the rest of the system is running properly signed firmware. The only problem with this scheme is that the dedicated TAm also has firmware, and that firmware can be attacked. The TAm processor is actually an FPGA, and researchers discovered that it was possible to modify the FPGA bitstream, totally defeating the secure boot mechanism.

The name of the attack, thrangrycat, might be a satirical shot at other ridiculous vulnerability names. Naming issues aside, it’s an impressive bit of work, numbered CVE-2019-1649. At the same time, Red Balloon Security disclosed another vulnerability that allowed command injection by an authenticated user.

Odds and Ends

See a security story you think we should cover? Drop us a note in the tip jar!

What Happened With Supermicro?

Back in October 2018, a bombshell rocked the tech industry when Bloomberg reported that some motherboards made by Supermicro had malicious components on them that were used to spy or interfere with the operation of the board, and that these motherboards were found on servers used by Amazon and Apple. We covered the event, looking at how it could work if it were true. Now seven months have passed, and it’s time to look at how things shook out.

Continue reading “What Happened With Supermicro?”

This Week In Security: Backdoors In Cisco Switches, PGP Spoofing In Emails, Git Ransomware

Some switches in Cisco’s 9000 series are susceptible to a remote vulnerability, numbered CVE-2019-1804 . It’s a bit odd to call it a vulnerability, actually, because the software is operating as intended. Cisco shipped out these switches with the same private key hardcoded in software for all root SSH logins. Anyone with the key can log in as root on any of these switches.

Cisco makes a strange claim in their advisory, that this is only exploitable over IPv6. This seems very odd, as there is nothing about SSH or the key authentication process that is IPv6 specific. This suggests that there is possibly another blunder, that they accidentally left the SSH port open to the world on IPv6. Another possibility is that they are assuming that all these switches are safely behind NAT routers, and therefore inaccessible through IPv4. One of the advantages/disadvantages of IPv6 is that there is no NAT, and all the network devices are accessible from the outside network. (Accessible in the sense that a route exists. Firewalling is still possible, of course.)

It’s staggering how many devices, even high end commercial devices, are shipped with unintentional yet effective backdoors, just like this one. Continue reading “This Week In Security: Backdoors In Cisco Switches, PGP Spoofing In Emails, Git Ransomware”

Faxsploit – Exploiting A Fax With A Picture

Security researchers have found a way to remotely execute code on a fax machine by sending a specially crafted document to it. So… who cares about fax? Well apparently a lot of persons are still using it in many institutions, governments and industries, including the healthcare industry, legal, banking and commercial. Bureaucracy and old procedures tend to die hard.

This is one of those exploits that deserve proper attention, for many reasons. It is well documented and is a great piece of proper old school hacking and reverse engineering. [Eyal Itkin], [Yannay Livneh] and [Yaniv Balmas] show us their process in a nicely done article that you can read here. If you are into security hacks, it’s really worth reading and also worth watching the DEFCON video. They focused their attention in a all-in-one printer/scanner/fax and the results were as good as it gets.

Our research set out to ask what would happen if an attacker, with merely a phone line at his disposal and equipped with nothing more than his target`s fax number, was able to attack an all-in-one printer by sending a malicious fax to it.

In fact, we found several critical vulnerabilities in all-in-one printers which allowed us to ‘faxploit’ the all-in-one printer and take complete control over it by sending a maliciously crafted fax.

As the researchers note, once an all-in-one printer has been compromised, it could be used to a wide array of malicious activity, from infiltrating the internal network, to stealing printed documents even to mining Bitcoin. In theory they could even produce a fax worm, replicating via the phone line.

The attack summary video is bellow, demonstrating an exploit that allows an attacker to pivot into an internal network and taking over a Windows machine using Eternal Blue NSA exploit.

Continue reading “Faxsploit – Exploiting A Fax With A Picture”

This Week In Security: Facebook Hacked Your Email, Cyber On The Power Grid, And A Nasty Zero-day

Ah, Facebook. Only you could mess up email verification this badly, and still get a million people to hand over their email address passwords. Yes, you read that right, Facebook’s email verification scheme was to ask users for their email address and email account password. During the verification, Facebook automatically downloaded the account’s contact list, with no warning and no way to opt out.

The amount of terrible here is mind-boggling, but perhaps we need a new security rule-of-thumb for these kind of situations. Don’t ever give an online service the password to a different service. In order to make use of a password in this case, it’s necessary to handle it in plain-text. It’s not certain how long Facebook stored these passwords, but they also recently disclosed that they have been storing millions of Facebook and Instagram passwords in plain-text internally.

This isn’t the first time Facebook has been called out for serious privacy shenanigans, either: In early 2018 it was revealed that the Facebook Android app had been uploading phone call records without informing users. Mark Zuckerberg has recently outlined his plan to give Facebook a new focus on privacy. Time will tell whether any real change will occur.

Cyber Can Mean Anything

Have you noticed that “cyber” has become a meaningless buzz-word, particularly when used by the usual suspects? The Department of Energy released a report that contained a vague but interesting sounding description of an event: “Cyber event that causes interruptions of electrical system operations.” This was noticed by news outlets, and people have been speculating ever since. What is frustrating about this is the wide range of meaning covered by the term “cyber event”. Was it an actual attack? Was Trinity shutting down the power stations, or did an intern trip over a power cord?
Continue reading “This Week In Security: Facebook Hacked Your Email, Cyber On The Power Grid, And A Nasty Zero-day”

Raspberry Pi Becomes The Encrypted Password Keeper You Need

Unless you’re one of the cool people who uses the same password everywhere, you might be in need of a hardware device that keeps your usernames and passwords handy. The Passkeeper is a hardware password storage system built on a Raspberry Pi. It encrypts your passwords, and only through the magic of a special key fob will you ever get your passwords out of this device.

The hardware for this device is built around the Raspberry Pi Zero. You might be questioning the use of a Pi Zero, but given that it’s an entire Linux system for just a few bucks, it only makes sense. The rest of the hardware is a tiny OLED SPI display, an RFID card reader, a few LEDs, some wire, and some solder. A 3D printed case keeps everything together.

Of course, this build is all about the software, and for that, the Passkeeper device is built in Go, with a system that builds a web interface, builds the firmware, and writes everything to an SD card. Usage is simply plugging the Passkeeper into the USB port of your computer where it presents itself as a network interface. Everything is available by pinging an IP address, and after that the web UI will log your usernames and passwords. All this data is encrypted, and can only be unlocked if an RFID key fob is present. It’s an interesting idea and certinaly inexpensive. It’s not quite as polished as something like the Mooltipass, but if you have a Pi around and don’t have a password keeper, this is something to build this weekend.

Stealing DNA By Phone

Data exfiltration via side channel attacks can be a fascinating topic. It is easy to forget that there are so many different ways that electronic devices affect the physical world other than their intended purpose. And creative security researchers like to play around with these side-effects for ‘fun and profit’.

Engineers at the University of California have devised a way to analyse exactly what a DNA synthesizer is doing by recording the sound that the machine makes with a relatively low-budget microphone, such as the one on a smart phone. The recorded sound is then processed using algorithms trained to discern the different noises that a particular machine makes and translates the audio into the combination of DNA building blocks the synthesizer is generating.

Although they focused on a particular brand of DNA Synthesizers, in which the acoustics allowed them to spy on the building process, others might be vulnerable also.

In the case of the DNA synthesizer, acoustics revealed everything. Noises made by the machine differed depending on which DNA building block—the nucleotides Adenine (A), Guanine (G), Cytosine (C), or Thymine (T)—it was synthesizing. That made it easy for algorithms trained on that machine’s sound signatures to identify which nucleotides were being printed and in what order.

Acoustic snooping is not something new, several interesting techniques have been shown in the past that raise, arguably, more serious security concerns. Back in 2004, a neural network was used to analyse the sound produced by computer keyboards and keypads used on telephones and automated teller machines (ATMs) to recognize the keys being pressed.

You don’t have to rush and sound proof your DIY DNA Synthesizer room just yet as there are probably more practical ways to steal the genome of your alien-cat hybrid, but for multi-million dollar biotech companies with a equally well funded adversaries and a healthy paranoia about industrial espionage, this is an ear-opener.

We written about other data exfiltration methods and side channels and this one, realistic scenario or not, it’s another cool audio snooping proof of concept.