A Tube, The Wooden Kind

While we aren’t heavy-duty woodworkers, we occasionally make some sawdust as part of a project, and we admire people who know how to make wood and do what they want. We were surprised when [Newton Makes] showed a wooden dowel that was quite long and was mostly hollow. The wall was thin, the hole was perfectly centered, and he claimed he did not use a drill to produce it. Check it out in the video below and see what you think.

We don’t want to spoil the surprise, but we can tell you that making something that long with a drill or even a drill press would be very difficult. The problem is that drills have runout — the bits are usually not totally centered, so the bit doesn’t spin like you think it does. Instead, it spins and rotates around a small circle.

Continue reading “A Tube, The Wooden Kind”

Custom PCB Is A Poor Man’s Pick And Place

Surface mount devices have gotten really small, so small that a poorly timed sneeze can send your 0603 and 0402 parts off to live with the dust motes lurking at the edge of your bench. While soldering such parts is a challenge, it’s not always size that matters. Some parts with larger footprints can be a challenge because of the pin pitch, and getting them to land just right on the PCB pads can be a real pain.

To fight this problem, [rahmanshaber] came up with this clever custom PCB fixture. The trick is to create a jig to hold the fine-pitch parts securely while still leaving room to work. In his case, the parts are a couple of SMD ribbon cable connectors and some chips in what appear to be TQFP packages. [rahmanshaber] used FreeCAD to get the outline of each part from the 3D model of his PCB, and KiCad to design the cutouts; skip to 7:30 or so in the video below if you don’t need the design lesson. The important bit is to leave enough room around the traces so that the part’s leads can rest of the PCB while still having room to access them.

Using the fixture is pretty intuitive. The fixture is aligned over the footprint of the part and fixed in place with some tape. Solder paste is applied to the pads, the part is registered into the hole, and you’re ready for soldering. [rahmanshaber] chose to use a hot plate to do the soldering, but it looks like there’s enough room for a soldering iron, if that’s your thing.

It’s a simple idea, but sometimes the simplest tools are the best. We’ve seen lots of other simple SMD tools, from assembly jigs to solder paste stencil fixtures. Continue reading “Custom PCB Is A Poor Man’s Pick And Place”

Understanding The T12 Style Soldering Iron Tip

Soldering irons and their tips come in a wide range of formats and styles, with the (originally Hakko) T12 being one of the more interesting offerings. This is because of how it integrates not only the tip and heating element, but also a thermocouple and everything else in a self-contained package. In a recent video [Big Clive] decided to not only poke at one of these T12 tips, but also do a teardown.

These elements have three bands, corresponding to the power supply along with a contact for the built-in thermocouple. After a quick trip to the Vise of Knowledge, [Clive] allows us a glimpse at the mangled remnants of a T12, which provides a pretty good overview of how these tips are put together.

Perhaps unsurprisingly, most of the length is a hollow tube through which the wires from the three contacts run. These power the ceramic heating element, as well as provide the soldering iron handle access to the thermocouple that’s placed near the actual tip.

With a simple diagram [Clive] explains how these T12 elements are then used to regulate the temperature, which isn’t too distinct from the average soldering iron with ceramic heating element, but it’s still nice to have it all integrated rather than having to try to carefully not damage the ceramic heater while swapping tips with the average soldering iron.

Continue reading “Understanding The T12 Style Soldering Iron Tip”

A Cordless Soldering Iron With A Difference

Many decades ago, when soldering was an activity more often associated with copper fabrication than with electronics, a soldering iron would have been a large lump of copper on a shaft with a wooden handle. You would heat it in a gas flame, and use its pointed end for your soldering. Electric irons have made this a thing of the past, but the basic idea is still one with some merit. [Shake the Future] is here with a modern take on such an iron, one that is heated in the microwave oven.

The business end of the iron is a normal soldering iron bit, but behind it is a piece of sintered silicon carbide wrapped in ceramic fibre and covered with Kapton tape and a high-temperature-resin 3D printed shield. On the back of that is a 3D-printed handle. The whole thing is put in the microwave oven for a few tens of seconds to heat to temperature, and thereafter, you have however long the thermal mass of the silicon carbide holds the temperature in which to do your soldering.

It’s an interesting idea that we can see has some use in situations where you need an iron for a quick job away from your bench but within reach of the kitchen. We like the lateral thinking, and it’s certainly fascinating to see the construction. But in an age of USB-C power packs and irons we have more convenient soldering on the go, so we’re not sure how useful it would be to us.

Silicon carbide is an interesting material, it’s not the first time we’ve written about it being used in a high temperature application.

Continue reading “A Cordless Soldering Iron With A Difference”

A dismantled drill on a cluttered workbench

Going Brushless: Salvaging A Dead Drill

Let’s face it—seeing a good tool go to waste is heartbreaking. So when his cordless drill’s motor gave up after some unfortunate exposure to the elements, [Chaz] wasn’t about to bin it. Instead, he embarked on a brave journey to breathe new life into the machine by swapping its dying brushed motor for a sleek brushless upgrade.

Things got real as [Chaz] dismantled the drill, comparing its guts to a salvaged portable bandsaw motor. What looked like an easy swap soon became a true hacker’s challenge: incompatible gear systems, dodgy windings, and warped laminations. Not discouraged by that, he dreamed up a hybrid solution: 3D-printing a custom adapter to make the brushless motor fit snugly into the existing housing.

The trickiest part was designing a speed control mechanism for the brushless motor—an impressively solved puzzle. After some serious elbow grease and ingenuity, the franken-drill emerged better than ever. We’ve seen some brushless hacks before, and this is worth adding to the list. A great tool hack and successful way to save an old beloved drill. Go ahead and check out the video below!

Continue reading “Going Brushless: Salvaging A Dead Drill”

Testing At Scale

We’ve said it before: building one-offs is different from building at scale. Even on a small scale. There was a time when it was rare for a hobbyist to produce more than one of anything, but these days, access to cheap PC boards makes small production runs much more common. [VoltLog], for example, is selling some modules and found he was spending a lot of time testing the boards. The answer? A testing jig for his PC board.

Big factories, of course, have special machines for bulk testing. These are usually expensive. [VoltLog] found a place specializing in creating custom test jigs using 3D printing.

They also have some standard machines. He did have to modify his PCB to accommodate special test points. He sent the design files to the company, and they produced a semi-custom testing jig for the boards in about a month.

Continue reading “Testing At Scale”

DIY Probe Clamps To Ease Your PCB Work

Those of us familiar with PCB work would agree that anything that helps hold probes secure and hands-free to components, traces, or test points is worth looking at. That’s where [2048bits]’ snap probe design comes in. With a little additional and inexpensive hardware, one can have all the hands-free probe clamps one’s workbench can fit!

That first link is where you’ll find a list of required hardware and the CAD files (in .step format) for the probe itself. The obvious approach to making the pieces would be to 3D print them, but we notice the design — while attractive — looks like a challenging print due to the features. We’re not the only ones to see that, and happily there’s already a remix by [user_2299476772] aimed at keeping the essential features while making them easier to print.

If you’re taking a DIY approach to PCB probes, we’d like to remind you that one of our readers discovered dental burrs make absolutely fantastic, non-slip probe tips. This seems like a good opportunity to combine two ideas, and having the CAD files for the probe clamp means modification is straightforward. Let us know on the tips line if you get something working!

[via Hackster]