Tap On! Tap Off! The Backlight!

We recently covered [TechnologyCatalyst’s] excellent $50 multimeter shoot out, and we weren’t surprised when the winner was the Uni-T UT61E. It’s jam packed with features, and has a lot of bang for your buck. But one thing that it’s missing is a backlight.

The 61E uses a chip form CyrusTek called the ES51922A. This chip has a back light features built into it, but Uni-T simply didn’t add the supporting circuitry and LEDs. This was done either to keep cost down, or to not take away sales from their higher end models – your guess is as good as ours. Even though several people have tried carefully soldering to this fine pitch chip package to add back lights, the backlight timer is set to turn off in 60 seconds.

[Nisei] on the EEVBlog forum came up with an elegant capacitive touch solution that we could see being used in many other applications. The mod centers around a using a TTP223 touch sensor module that you can find on eBay for $1 instead of tapping into the meter’s dormant backlight controller. Add in a voltage regulator, a resistor, 2 leds and some foil tape, and that’s about all you need. [Nisei] did a great job documenting the mod with graphics rather than pictures (that can be a bit ambiguous at times.) Also, in case you missed the $50 DMM review you can find it here.

With all that said, we’re thinking the next multimeter mod might just need to be the “Clap-On, Clap-off” meter.

High Tech, Low Cost Digital Torque Meter

Ever obsessed with stripping the hype from the reality of power tool marketing, and doing so on the cheap, [arduinoversusevil] has come up with a home-brew digital torque meter that does the job of commercial units costing hundreds of times as much.

For those of us used to [AvE]’s YouTube persona, his Instructables post can be a little confusing. No blue smoke is released, nothing is skookum or chowdered, and the weaknesses of specific brands of tools are not hilariously enumerated. For that treatment of this project, you’ll want to see the video after the break. Either way you choose, he shows us how a $6 load cell and a $10 amplifier can be used to accurately measure the torque of your favorite power driver with an Arduino. We’ve seen a few projects based on load cells, like this posture-correcting system, but most of them use the load cell to measure linear forces. [AvE]’s insight that a load cell doesn’t care whether it’s stretched or twisted is the key to making a torque meter that mere mortals can afford.

Looks like low-end load cells might not be up to measuring the output on your high-power pneumatic tools, at least not repeatedly, but they ought to hold up to most electric drivers just fine. And spoiler alert: the Milwaukee driver that [AvE] tested actually lived up to the marketing. Continue reading “High Tech, Low Cost Digital Torque Meter”

Steam-Powered Machine Shop

It’s sometimes hard to believe how stuff was made over a hundred years ago when electricity wasn’t widely available. One of the most common ways of powering tools was via belt drive — powered by a water mill, or a steam engine, or even horses. [David Richards] has spent a good chunk of time making his own period accurate steam powered machine shop — and it’s fantastic.

It represents approximately what a 1920’s machine shop would look like in America. Not a single tool is newer than 1925. The whole shop is powered by a line shaft using steam power. A massive boiler provides steam for a Pennsylvania built 5 by 5 steam engine, dating back to approximately 1895. Using belts and clutches, it powers a few lathes, drill presses, a mill, and even a shaper — an identical machine to one in the Edison Museum!

Continue reading “Steam-Powered Machine Shop”

Literal Breadboard Hack Forces It To Accept Dual Pin Headers

Usually when there is a clear demand for something, some entrepreneur will fill that demand. Unfortunately, no one seems to think there’s a need for a solderless breadboard product that can handle boards that have a dual row header. These devices have 0.1″ spacing in both directions, so while they will fit in a standard breadboard, the contacts will short out the adjacent pins on the device, which makes it worthless.

[Baz] needed to connect an RF24L01 module to a breadboard. Instead of connecting leads to the device or devising a breakout board, [Baz] actually hacked his breadboard. To make an area to plug in a dual row device, he took the breadboard apart, pulled the spring contacts, cut them, and then put them back in.

Of course, you have to make sure the cut is wide enough that the two parts of the spring won’t touch. It looks like [Baz] used a small screwdriver to help the springs keep their shape and cut them with simple diagonal cutters.

Continue reading “Literal Breadboard Hack Forces It To Accept Dual Pin Headers”

Woodworking Blemish Removal Technique Pops Your Clamping Dimples

If you’ve done any woodworking in the past, odds are likely that you’ll eventually end up fixturing your stock in the crushing grip of a vise or C-Clamp. The results are painful, leaving a lasting impression of the clamp jaws on your beautiful, otherwise-unmarred piece of stock. Often, you’ll need to design around this issue, fixture it gently, or cushion the grip with a softer intermediate material. [Chimponabike] had other thoughts, though, and developed a technique for successfully popping the dimples out, returning clamped wood to its perfectly unmarred form.

wood-ironing-thumbThe Technique itself is dead simple and takes only a few minutes to perform. Simply apply a small amount of water, let it seep into the wood, and then bring a hot iron down onto the soaked wood to evaporate off the soaked water–instantly inflating the wood back into its original form!

It’s not the first time we’ve abused our tools and home appliances to do some clever things with wood, but it’s certainly worth adding to that “Tome of Techniques: Wood Edition” that you’ve been building in your browser’s bookmarks bar.

Thanks for the tip, [James]!

Panel-Mounted Breadboard Accessories

[Chuck Stephens] grew up with Radio Shack 100-in-1 electronic kits. The ones with lots of components and spring terminals that could be wired to be a radio, a burglar alarm, or whatever.[Chuck] graduated to solderless breadboard, but did miss having panel mounted components like pots and switches easily available. So he has been building his own accessory boxes.

Of course, it is easy enough to just connect breadboard wires to component, but [Chuck] went further than that. Using boxes of different types (including a cigar box), he mounted the components properly and also wired them to a breadboard for easy connection.

If you’ve ever tried to solder to breadboard springs (we have), you’ve found it is hard to get adhesion to the shiny metal. [Chuck] solved the problem by crimping little wire hooks to the springs. The result is a good looking and functional prototyping aid.

They do make tiny breadboard style contacts (called tie point blocks; good luck finding them) for this kind of application, but the crimp technique works on common breadboards. These are cheap and much easier to find.

Of course, these days, we are as likely to want to mount SMDs than panel mounted controls. Now if we could only figure out where to put the components. If you want something less involved, take a look at the video below.

Continue reading “Panel-Mounted Breadboard Accessories”

3D Printed Vice Holds Dev Boards Beside Breadboard

The Stickvise has been a staple of the Hackaday community for a while now. If you need something held for soldering there’s no better low-cost helping hand. But if you’re just using a breadboard and a dev board of some sort, there’s another vice on the horizon that uses similar spring clamping to hold everything in place while you build something awesome.

BreadboardVise1-croppedWhile [Pat]’s inspiration came from the aforementioned Stickvise, the new 3d-printed vice is just what you’ll need before you’re ready to do the soldering. The vice is spring-loaded using rubber bands. The base is sized to fit a standard breadboard in the center with clamping arms on either side to hold dev boards such as an Arduino. This innovative yet simple de”vice” grips boards well enough that you won’t be chasing them around your desk, knocking wires out of place, anymore.

There are some nuances to this board, so be sure to check out the video below to see it in action. As we mentioned, it uses rubber bands instead of springs to keep it simple, and it has some shapes that are easily 3d printed such as the triangular rails. If you want to 3d print your own, the files you’ll need are available on the project’s site. If you want to get even simpler, we’ve seen a few other vices around here as well.

The Stickvise is available for sale in the Hackaday Store.

Continue reading “3D Printed Vice Holds Dev Boards Beside Breadboard”