PCB Edge USB-C

Connector-Free Zone: PCB Edge As USB-C Interfaces

Sometimes when you’re making a PCB that you plan on programming over USB, but you only plan on plugging in a couple of times, it would be nice to make that connection without another BOM item. Over on GitHub [AnasMalas] has released a PCB edge USB-C connection symbol/footprint to do just that!

This isn’t the first PCB edge USB-C connector we’ve seen, but this one has some nice features. It’s available in both KiCad and EasyEDA formats, allowing you to easily add it into your preferred ECAD software. As well as supporting multiple software packages, there are two versions included: a 10-pin and 14-pin version. The 10-pin version has, on each side, 2 USB voltage pins, 2 ground pins, and a CC1 or CC2 pin on its respective side; this version is ideal if you’re looking to just supply power via the connector. The 14-pin version has all the pins of the 10-pin version with the addition of four data-positive and data-negative pins needed to relay information to the board, ideal if you’re planning on programming a microcontroller with this connection.

One important note is that, while most PCBs default to 1.6 mm thickness, if you use this connector you’ll need to drop that down to ~0.8 mm to properly interface with a common USB cable. [AnasMalas] also suggests using ENIG board finish to preserve the connectors on your USB cable.

For such a small and common connector, USB-C holds a ton of potential. Be sure to check out our series all about USB-C for more details.

Thanks to [Ben] for the tip.

Save Your USB-C Plugs From Oblivion

USB-C as the “One Cable To Rule Them All” has certainly been a success. While USB-A is still around for now, most of us have breathed a hefty sigh of relief with the passing of micro-USB and the several display and power standards it replaces. It’s not without its minor issues though. One of them is that it’s as susceptible as any other cable to a bit of strain. For that, we think [NordcaForm]’s 3D-printed USB-C cable strain relief is definitely a cut above the rest.

Waxing lyrical about a simple 3D printed model might seem overkill for Hackaday, and it’s true, it’s not something we do often, but as Hackaday writers travel around with plenty of USB-C connected peripherals, we like the design of this one. It’s flexible enough to be useful without resorting to exotic filaments, and since it’s available in a few different forms with curved or straight edges, we think it can find a place in many a cable setup. Certainly more of an everyday carry than a previously featured 3D print. If you want to learn more about USB C, we have a whole series of posts for you to binge read.

BenchVolt PD

BenchVolt PD: USB PD Meets Benchtop Precision

USB power has become ubiquitous — everything from phones to laptops all use it  — so why not your lab bench? This is what [EEEngineer4Ever] set out to do with the BenchVolt PD USB adjustable bench power supply. This is more than just a simple breakout for standard USB PD voltages, mind you; with adjustable voltages, SCPI support, and much more.

The case is made of laser-cut acrylic, mounted to an aluminum base, not only providing a weighted base but also helping with dissipating heat when pulling the 100 W this is capable of supplying. Inside the clear exterior, not only do you get to peek at all the circuitry but there is also a bright 1.9-inch TFT screen showing the voltage, current, and wattage of the various outputs. There is a knob that can adjust the variable voltage output and navigate through the menu. Control isn’t limited to the knob, mind you; there also is a Python desktop application to make it easy changing the settings and to open up the possibility to integrate its control alongside other automated test equipment.

There are five voltage outputs in this supply: three fixed ones—1.8 V, 2.5 V, and 3.3 V—and two adjustable ones: 0.5-5 V and 2.5-32 V. All five of these outputs are capable of up to 3 A. There are also a variety of waveforms that can be output, blurring the lines between power supply and function generator. While the BenchVolt PD will be open-sourced, [EEEngineer4Ever] will soon be releasing it over on CrowdSupply for those interested in one without building one themselves. We are big fans of USB PD gear, so be sure to check out some other USB PD projects we’ve featured.

Continue reading “BenchVolt PD: USB PD Meets Benchtop Precision”

Piers holding a USB One ROM.

One ROM Gets A USB Stack

Our hacker [Piers Finlayson] is at it again, and this time he has added USB support to One ROM.

With this new connectivity you can attach your One ROM to your computer with a USB cable and then in a matter of seconds upload new firmware from your Chrome (or Chromium) web browser. This new connectivity will supplement but not replace the existing serial wire connectivity because the serial wire connectivity enables certain advanced use cases not supported by the USB stack, such as reprogramming a ROM in-place as it’s being served. The new USB interface will probably suit most users who just want to use One ROM to manage the ROMs for their old kit and who don’t need the extra functionality.

Addressing the question as to why he didn’t have USB connectivity from the start [Piers] claimed it was because he didn’t like soldering the USB sockets! But given this is a service he can get from his board house that is no longer his problem! [Piers] said he picked Micro USB over USB-C because the former demands less circuit board real estate than the latter. Squeezing everything on to the board remains a challenge!

Continue reading “One ROM Gets A USB Stack”

When USB Charger Marketing Claims Are Technically True

The 600W is not the output rating, despite all appearances. (Credit: Denki Otaku, YouTube)
The 600W is not the output rating, despite all appearances. (Credit: Denki Otaku, YouTube)

We have seen many scam USB chargers appear over the years, with a number of them being enthusiastically ripped apart and analyzed by fairly tame electrical engineers. Often these are obvious scams with clear fire risks, massively overstated claims and/or electrocution hazards. This is where the “600W” multi-port USB charger from AliExpress that [Denki Otaku] looked at is so fascinating, as despite only outputting 170 Watt before cutting out, it’s technically not lying in its marketing and generally well-engineered.

The trick being that the “600W” is effectively just the model name, even if you could mistake it for the summed up output power as listed on the ports. The claimed GaN components are also there, with all three claimed parts counted and present in the main power conversion stages, along with the expected efficiency gains.

While testing USB-PD voltages and current on the USB-C ports, the supported USB-PD EPR wattage and voltages significantly reduce when you start using ports, indicating that they’re clearly being shared, but this is all listed on the product page.

The main PCB of the unit generates the 28 VDC that’s also the maximum voltage that the USB-C ports can output, with lower voltages generated as needed. On the PCB with the USB ports we find the step-down converters for this, as well as the USB-PD and other USB charging control chips. With only a limited number of these to go around, the controller will change the current per port dynamically as the load increases, as you would expect.

Considering that this particular charger can be bought for around $30, is up-front about the limitations and uses GaN, while a genuine 300 Watt charger from a brand like Anker goes for $140+, it leads one to question the expectations of the buyer more than anything. While not an outright scam like those outrageous $20 ‘2 TB’ SSDs, it does seem to prey on people who have little technical understanding of what crazy amounts of cash you’d have to spend for a genuine 600 Watt GaN multi-port USB charger, never mind how big such a unit would be.

Continue reading “When USB Charger Marketing Claims Are Technically True”

Segger’s Awkward USB-C Issue With The J-Link Compact Debugger

Theoretically USB-C is a pretty nifty connector, but the reality is that it mostly provides many exciting new ways to make your device not work as expected. With the gory details covered by [Alvaro], the latest to join the party is Segger, with its J-Link BASE Compact MCU debugger displaying the same behavior which we saw back when the Raspberry Pi 4 was released in 2019. Back then so-called e-marked USB-C cables failed to power the SBC, much like how this particular J-Link unit refuses to power up when connected using one of those special USB-C cables.

We covered the issue in great detail back then, discussing how the CC1 and CC1 connections need to be wired up correctly with appropriate resistors in order for the USB-C supply – like a host PC – to provide power to the device. As [Alvaro] discovered through some investigation, this unit made basically the same mistake as the RPi 4B SBC before the corrected design. This involves wiring CC1 and CC2 together and as a result seeing the same <1 kOhm resistance on the active CC line, meaning that to the host device you just hooked up a USB-C audio dongle, which obviously shouldn’t be supplied with power.

Although it’s not easy to tell when this particular J-Link device was produced, the PCB notes its revision as v12.1, so presumably it’s not the first rodeo for this general design, and the product page already shows a different label than for the device that [Alvaro] has. It’s possible that it originally was sloppily converted from a previous micro-USB-powered design where CC lines do not exist and things Just Work™, but it’s still a pretty major oversight from what should be a reputable brand selling a device that costs €400 + VAT, rather than a reputable brand selling a <$100 SBC.

For any in the audience who have one of these USB-C-powered debuggers, does yours work with e-marked cables, and what is the revision and/or purchase date?

Photo of the Haasoscope Pro

Haasoscope Pro: Open-Everything 2 GHz USB Oscilloscope

Our hacker [haas] is at it again with the Haasoscope Pro, a full redesign of the original Haasoscope, which was a successful Crowd Supply campaign back in 2018.

This new Pro version was funded on Crowd Supply in April this year and increases the bandwidth from 60 MHz to 2 GHz, the vertical resolution from 8 to 12 bits, and the sample rate from 125 MS/s to 3.2 GS/s. Selling for $999 it claims to be the first open-everything, affordable, high-bandwidth, real-time sampling USB oscilloscope.

The firmware and software are under active development and a new version was released yesterday.

Continue reading “Haasoscope Pro: Open-Everything 2 GHz USB Oscilloscope”