Wireless Base Station Eavesdrops On Robot Communications

wireless-base-station-evesdrops-on-robot-communications

The good [Doctor Iguana] has been working on a pair of robots which communicate with each other using mRF24J40MA wireless transceivers. This presents a challenge in debugging, as he really didn’t have an easy way of monitoring those communications. His solution was to build his own base station which lets him use a computer to monitor what each robot is saying.

He spun his own board for the project. USB connectivity is provided by an FTDI chip, the FT232RL. This converts the USB communications in to serial for the dsPIC33 microcontroller. The FTDI chip comes with a fairly fine-pitch, but the footprint can still be fabricated using toner transfer if you’re fairly familiar with the process. [Dr. Iguana] took some close-up images of the unpopulated board which might make you a little nervous with the soldering iron. The other end of the board hosts the same Microchip wireless module as he used in his robots.

After a bit of rework (noted on the photo labels) he got this up and running. Now he can capture all of the wireless communications and see if problems are due to the sender or the receiver.

Cheap Biquad Antenna Extends LAN Between Apartments

[Danilo Larizza] is sharing a network connection between a couple of apartments. They are not far apart, but they are also not right next to each other so a set of external antennas is necessary. He built this 2.4 GHz biquad antenna on the cheap (translated) just to test if it improved the signal before he tried to buy a proper antenna. It turns out to work well enough that this is all that he needs.

The antenna itself is about one meter of thick wire bent into two squares which are 31mm on each side. The coaxial cable going to the router connects to the center portion of this antenna. For a bit better directional reception he added some tin foil as a reflector. Since this is outdoors he used a food storage container for protection (the antenna is mounted to the lid, the body has been removed for this picture). The whole things is perched on a stake in a flower pot with proper line of sight to the other antenna.

We’ve seen a very similar design used for an NRF 24L01+ radio. If you need more details that [Danilo] posted that would be a good project to study.

Wireless Speaker Made Using Arduinos And 2.4 GHz Tranceivers

[Texane] picked up a 2.4 GHz transmitter/receiver pair for transmitting sensor data wirelessly. After using them in a project he wanted to try pushing them a bit to see what the limits are when it comes to higher bandwidths. He ended up building a wireless speaker that transmits audio at about 90 KB/s. That link leads to a subfolder of his git repository. The code for this project is in the RX and TX folders, with images and video in the DOC folder.

The radio hardware that he’s using is a Nordic nRF24L01P chip which is available on a breakout board from Sparkfun. [Texane] mentioned to us that the chip includes error checking, packet ACK, and automatic retransmission. But these add overhead that can slow things down. The chip does offer the option to disable these features to get lower level access to the hardware. That’s exactly what he did and he mentions that the example code he wrote for the transmitter and receiver make every cycle count. This makes us wonder if it’s the speed of the ATmega328 chip that is the bottleneck, or the transceivers themselves?

Need A Quadcopter Transmitter? Use A PS2 Controller!

After [Pyrofer] built a quadcopter, he purchased a cheap 6-channel transmitter made in China. Unfortunately, that transmitter was terrible so he took an old PS2 controller and built his own.

For his build, [Pyrofer] broke out the analog sticks and wired them to an AVR housed in the handle of the controller. The AVR sent commands to a 2.4 GHz radio transmitter powered by a small LiPo battery. With the addition of a few tact switches behind the shoulder buttons of the controller, [Pyrofer] has four axes of control with a few buttons for changing modes on his quadcopter.

This build really doesn’t hold a candle to some of the awesome DIY RC transmitters we’ve seen, but we’ve got to give [Pyrofer] credit for coming up with a very simple and easy build. Just about everyone has a PS2 or XBox controller lying around, and with a few extra hardware bits it’s easy to bodge up a decent remote control.

[Pyrofer] used a project called Funkenschlag to generate PPM signals, so if you feel the need to replicate this project send it in when you’re done.

Power Index Window Display Turns Buildings Into LED Matrices

What started off as a fun project using light bulbs picked up some sponsorship and is going on tour. This project now uses LED modules controlled on the 2.4 GHz band to turn buildings into full color displays. It’s the product of students at Wrocław University of Technology in Poland. The group is something of an extra-curricular club that has been doing this sort of thing for years. But now they’ve picked up some key sponsorships which not only allowed for upgraded hardware, but sent the group on a tour of Universities around Europe. Who would’ve thought you could go on tour with something like this?

Much like the MIT project we looked at in April, this lights up the dark rooms of a grid-like building. It does go well beyond playing Tetris though. The installation sets animations to music, with a custom animation editor so that you can submit your own wares for the next show. Don’t miss the lengthy performance after the break.

Continue reading “Power Index Window Display Turns Buildings Into LED Matrices”

RFID Tracking System

[Nicholas] built an active tracking system using RFID tags. The system’s tags operate in the 2.4 GHz band and are used to track either people or assets. The readers are on a mesh network and can triangulate the location of any tag for display on a map. His system is even set up to show the travel history of each tag. [Nicholas] shared every detail in his writeup including some background about available hardware options and how he made his final decisions on what devices to use for the job. His conglomeration of software that ties the whole project together is also available for download.

WiFi Spectrum Analyzer

ez430 (Custom)

[Tim] noticed a 2.4Ghz WiFi spectrum analyzer on thinkgeek a while ago and got curious.  He knew that the spectrum analyzers with which he was familiar were giant expensive units, so he got curious what this little dongle was. It turns out, it really wasn’t much at all. Just a simple wireless receiver. He decided that rather than spending the $399 for one, he would toss one together using an Xbee. His total cost ended up at roughly $50 for basically the same unit. While he doesn’t give a schematic, you can download his source code on the site.